This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of division operation. (Contributed by Mario Carneiro, 2-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvrcl.b | |- B = ( Base ` R ) |
|
| dvrcl.o | |- U = ( Unit ` R ) |
||
| dvrcl.d | |- ./ = ( /r ` R ) |
||
| Assertion | dvrcl | |- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( X ./ Y ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvrcl.b | |- B = ( Base ` R ) |
|
| 2 | dvrcl.o | |- U = ( Unit ` R ) |
|
| 3 | dvrcl.d | |- ./ = ( /r ` R ) |
|
| 4 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 5 | eqid | |- ( invr ` R ) = ( invr ` R ) |
|
| 6 | 1 4 2 5 3 | dvrval | |- ( ( X e. B /\ Y e. U ) -> ( X ./ Y ) = ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) ) |
| 7 | 6 | 3adant1 | |- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( X ./ Y ) = ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) ) |
| 8 | 2 5 1 | ringinvcl | |- ( ( R e. Ring /\ Y e. U ) -> ( ( invr ` R ) ` Y ) e. B ) |
| 9 | 8 | 3adant2 | |- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( ( invr ` R ) ` Y ) e. B ) |
| 10 | 1 4 | ringcl | |- ( ( R e. Ring /\ X e. B /\ ( ( invr ` R ) ` Y ) e. B ) -> ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) e. B ) |
| 11 | 9 10 | syld3an3 | |- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) e. B ) |
| 12 | 7 11 | eqeltrd | |- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( X ./ Y ) e. B ) |