This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A left-multiple of X is divisible by X . (Contributed by Mario Carneiro, 1-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsr.1 | |- B = ( Base ` R ) |
|
| dvdsr.2 | |- .|| = ( ||r ` R ) |
||
| dvdsr.3 | |- .x. = ( .r ` R ) |
||
| Assertion | dvdsrmul | |- ( ( X e. B /\ Y e. B ) -> X .|| ( Y .x. X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsr.1 | |- B = ( Base ` R ) |
|
| 2 | dvdsr.2 | |- .|| = ( ||r ` R ) |
|
| 3 | dvdsr.3 | |- .x. = ( .r ` R ) |
|
| 4 | simpl | |- ( ( X e. B /\ Y e. B ) -> X e. B ) |
|
| 5 | simpr | |- ( ( X e. B /\ Y e. B ) -> Y e. B ) |
|
| 6 | eqid | |- ( Y .x. X ) = ( Y .x. X ) |
|
| 7 | oveq1 | |- ( z = Y -> ( z .x. X ) = ( Y .x. X ) ) |
|
| 8 | 7 | eqeq1d | |- ( z = Y -> ( ( z .x. X ) = ( Y .x. X ) <-> ( Y .x. X ) = ( Y .x. X ) ) ) |
| 9 | 8 | rspcev | |- ( ( Y e. B /\ ( Y .x. X ) = ( Y .x. X ) ) -> E. z e. B ( z .x. X ) = ( Y .x. X ) ) |
| 10 | 5 6 9 | sylancl | |- ( ( X e. B /\ Y e. B ) -> E. z e. B ( z .x. X ) = ( Y .x. X ) ) |
| 11 | 1 2 3 | dvdsr | |- ( X .|| ( Y .x. X ) <-> ( X e. B /\ E. z e. B ( z .x. X ) = ( Y .x. X ) ) ) |
| 12 | 4 10 11 | sylanbrc | |- ( ( X e. B /\ Y e. B ) -> X .|| ( Y .x. X ) ) |