This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left inverse of a group element. (Contributed by NM, 24-Aug-2011) (Revised by Mario Carneiro, 6-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinv.b | |- B = ( Base ` G ) |
|
| grpinv.p | |- .+ = ( +g ` G ) |
||
| grpinv.u | |- .0. = ( 0g ` G ) |
||
| grpinv.n | |- N = ( invg ` G ) |
||
| Assertion | grplinv | |- ( ( G e. Grp /\ X e. B ) -> ( ( N ` X ) .+ X ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinv.b | |- B = ( Base ` G ) |
|
| 2 | grpinv.p | |- .+ = ( +g ` G ) |
|
| 3 | grpinv.u | |- .0. = ( 0g ` G ) |
|
| 4 | grpinv.n | |- N = ( invg ` G ) |
|
| 5 | 1 2 3 4 | grpinvval | |- ( X e. B -> ( N ` X ) = ( iota_ y e. B ( y .+ X ) = .0. ) ) |
| 6 | 5 | adantl | |- ( ( G e. Grp /\ X e. B ) -> ( N ` X ) = ( iota_ y e. B ( y .+ X ) = .0. ) ) |
| 7 | 1 2 3 | grpinveu | |- ( ( G e. Grp /\ X e. B ) -> E! y e. B ( y .+ X ) = .0. ) |
| 8 | riotacl2 | |- ( E! y e. B ( y .+ X ) = .0. -> ( iota_ y e. B ( y .+ X ) = .0. ) e. { y e. B | ( y .+ X ) = .0. } ) |
|
| 9 | 7 8 | syl | |- ( ( G e. Grp /\ X e. B ) -> ( iota_ y e. B ( y .+ X ) = .0. ) e. { y e. B | ( y .+ X ) = .0. } ) |
| 10 | 6 9 | eqeltrd | |- ( ( G e. Grp /\ X e. B ) -> ( N ` X ) e. { y e. B | ( y .+ X ) = .0. } ) |
| 11 | oveq1 | |- ( y = ( N ` X ) -> ( y .+ X ) = ( ( N ` X ) .+ X ) ) |
|
| 12 | 11 | eqeq1d | |- ( y = ( N ` X ) -> ( ( y .+ X ) = .0. <-> ( ( N ` X ) .+ X ) = .0. ) ) |
| 13 | 12 | elrab | |- ( ( N ` X ) e. { y e. B | ( y .+ X ) = .0. } <-> ( ( N ` X ) e. B /\ ( ( N ` X ) .+ X ) = .0. ) ) |
| 14 | 13 | simprbi | |- ( ( N ` X ) e. { y e. B | ( y .+ X ) = .0. } -> ( ( N ` X ) .+ X ) = .0. ) |
| 15 | 10 14 | syl | |- ( ( G e. Grp /\ X e. B ) -> ( ( N ` X ) .+ X ) = .0. ) |