This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplicative identity is a unit. (Contributed by Mario Carneiro, 1-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unit.1 | |- U = ( Unit ` R ) |
|
| unit.2 | |- .1. = ( 1r ` R ) |
||
| Assertion | 1unit | |- ( R e. Ring -> .1. e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unit.1 | |- U = ( Unit ` R ) |
|
| 2 | unit.2 | |- .1. = ( 1r ` R ) |
|
| 3 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 4 | 3 2 | ringidcl | |- ( R e. Ring -> .1. e. ( Base ` R ) ) |
| 5 | eqid | |- ( ||r ` R ) = ( ||r ` R ) |
|
| 6 | 3 5 | dvdsrid | |- ( ( R e. Ring /\ .1. e. ( Base ` R ) ) -> .1. ( ||r ` R ) .1. ) |
| 7 | 4 6 | mpdan | |- ( R e. Ring -> .1. ( ||r ` R ) .1. ) |
| 8 | eqid | |- ( oppR ` R ) = ( oppR ` R ) |
|
| 9 | 8 | opprring | |- ( R e. Ring -> ( oppR ` R ) e. Ring ) |
| 10 | 8 3 | opprbas | |- ( Base ` R ) = ( Base ` ( oppR ` R ) ) |
| 11 | eqid | |- ( ||r ` ( oppR ` R ) ) = ( ||r ` ( oppR ` R ) ) |
|
| 12 | 10 11 | dvdsrid | |- ( ( ( oppR ` R ) e. Ring /\ .1. e. ( Base ` R ) ) -> .1. ( ||r ` ( oppR ` R ) ) .1. ) |
| 13 | 9 4 12 | syl2anc | |- ( R e. Ring -> .1. ( ||r ` ( oppR ` R ) ) .1. ) |
| 14 | 1 2 5 8 11 | isunit | |- ( .1. e. U <-> ( .1. ( ||r ` R ) .1. /\ .1. ( ||r ` ( oppR ` R ) ) .1. ) ) |
| 15 | 7 13 14 | sylanbrc | |- ( R e. Ring -> .1. e. U ) |