This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cancellation law for division. ( divcan1 analog.) (Contributed by Mario Carneiro, 2-Jul-2014) (Revised by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvrass.b | |- B = ( Base ` R ) |
|
| dvrass.o | |- U = ( Unit ` R ) |
||
| dvrass.d | |- ./ = ( /r ` R ) |
||
| dvrass.t | |- .x. = ( .r ` R ) |
||
| Assertion | dvrcan1 | |- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( ( X ./ Y ) .x. Y ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvrass.b | |- B = ( Base ` R ) |
|
| 2 | dvrass.o | |- U = ( Unit ` R ) |
|
| 3 | dvrass.d | |- ./ = ( /r ` R ) |
|
| 4 | dvrass.t | |- .x. = ( .r ` R ) |
|
| 5 | eqid | |- ( invr ` R ) = ( invr ` R ) |
|
| 6 | 1 4 2 5 3 | dvrval | |- ( ( X e. B /\ Y e. U ) -> ( X ./ Y ) = ( X .x. ( ( invr ` R ) ` Y ) ) ) |
| 7 | 6 | 3adant1 | |- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( X ./ Y ) = ( X .x. ( ( invr ` R ) ` Y ) ) ) |
| 8 | 7 | oveq1d | |- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( ( X ./ Y ) .x. Y ) = ( ( X .x. ( ( invr ` R ) ` Y ) ) .x. Y ) ) |
| 9 | simp1 | |- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> R e. Ring ) |
|
| 10 | simp2 | |- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> X e. B ) |
|
| 11 | 2 5 1 | ringinvcl | |- ( ( R e. Ring /\ Y e. U ) -> ( ( invr ` R ) ` Y ) e. B ) |
| 12 | 11 | 3adant2 | |- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( ( invr ` R ) ` Y ) e. B ) |
| 13 | 1 2 | unitcl | |- ( Y e. U -> Y e. B ) |
| 14 | 13 | 3ad2ant3 | |- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> Y e. B ) |
| 15 | 1 4 | ringass | |- ( ( R e. Ring /\ ( X e. B /\ ( ( invr ` R ) ` Y ) e. B /\ Y e. B ) ) -> ( ( X .x. ( ( invr ` R ) ` Y ) ) .x. Y ) = ( X .x. ( ( ( invr ` R ) ` Y ) .x. Y ) ) ) |
| 16 | 9 10 12 14 15 | syl13anc | |- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( ( X .x. ( ( invr ` R ) ` Y ) ) .x. Y ) = ( X .x. ( ( ( invr ` R ) ` Y ) .x. Y ) ) ) |
| 17 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 18 | 2 5 4 17 | unitlinv | |- ( ( R e. Ring /\ Y e. U ) -> ( ( ( invr ` R ) ` Y ) .x. Y ) = ( 1r ` R ) ) |
| 19 | 18 | 3adant2 | |- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( ( ( invr ` R ) ` Y ) .x. Y ) = ( 1r ` R ) ) |
| 20 | 19 | oveq2d | |- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( X .x. ( ( ( invr ` R ) ` Y ) .x. Y ) ) = ( X .x. ( 1r ` R ) ) ) |
| 21 | 1 4 17 | ringridm | |- ( ( R e. Ring /\ X e. B ) -> ( X .x. ( 1r ` R ) ) = X ) |
| 22 | 21 | 3adant3 | |- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( X .x. ( 1r ` R ) ) = X ) |
| 23 | 20 22 | eqtrd | |- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( X .x. ( ( ( invr ` R ) ` Y ) .x. Y ) ) = X ) |
| 24 | 16 23 | eqtrd | |- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( ( X .x. ( ( invr ` R ) ` Y ) ) .x. Y ) = X ) |
| 25 | 8 24 | eqtrd | |- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( ( X ./ Y ) .x. Y ) = X ) |