This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of being a unit of a ring. A unit is an element that left- and right-divides one. (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 8-Dec-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unit.1 | |- U = ( Unit ` R ) |
|
| unit.2 | |- .1. = ( 1r ` R ) |
||
| unit.3 | |- .|| = ( ||r ` R ) |
||
| unit.4 | |- S = ( oppR ` R ) |
||
| unit.5 | |- E = ( ||r ` S ) |
||
| Assertion | isunit | |- ( X e. U <-> ( X .|| .1. /\ X E .1. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unit.1 | |- U = ( Unit ` R ) |
|
| 2 | unit.2 | |- .1. = ( 1r ` R ) |
|
| 3 | unit.3 | |- .|| = ( ||r ` R ) |
|
| 4 | unit.4 | |- S = ( oppR ` R ) |
|
| 5 | unit.5 | |- E = ( ||r ` S ) |
|
| 6 | elfvdm | |- ( X e. ( Unit ` R ) -> R e. dom Unit ) |
|
| 7 | 6 1 | eleq2s | |- ( X e. U -> R e. dom Unit ) |
| 8 | 7 | elexd | |- ( X e. U -> R e. _V ) |
| 9 | df-br | |- ( X .|| .1. <-> <. X , .1. >. e. .|| ) |
|
| 10 | elfvdm | |- ( <. X , .1. >. e. ( ||r ` R ) -> R e. dom ||r ) |
|
| 11 | 10 3 | eleq2s | |- ( <. X , .1. >. e. .|| -> R e. dom ||r ) |
| 12 | 11 | elexd | |- ( <. X , .1. >. e. .|| -> R e. _V ) |
| 13 | 9 12 | sylbi | |- ( X .|| .1. -> R e. _V ) |
| 14 | 13 | adantr | |- ( ( X .|| .1. /\ X E .1. ) -> R e. _V ) |
| 15 | fveq2 | |- ( r = R -> ( ||r ` r ) = ( ||r ` R ) ) |
|
| 16 | 15 3 | eqtr4di | |- ( r = R -> ( ||r ` r ) = .|| ) |
| 17 | fveq2 | |- ( r = R -> ( oppR ` r ) = ( oppR ` R ) ) |
|
| 18 | 17 4 | eqtr4di | |- ( r = R -> ( oppR ` r ) = S ) |
| 19 | 18 | fveq2d | |- ( r = R -> ( ||r ` ( oppR ` r ) ) = ( ||r ` S ) ) |
| 20 | 19 5 | eqtr4di | |- ( r = R -> ( ||r ` ( oppR ` r ) ) = E ) |
| 21 | 16 20 | ineq12d | |- ( r = R -> ( ( ||r ` r ) i^i ( ||r ` ( oppR ` r ) ) ) = ( .|| i^i E ) ) |
| 22 | 21 | cnveqd | |- ( r = R -> `' ( ( ||r ` r ) i^i ( ||r ` ( oppR ` r ) ) ) = `' ( .|| i^i E ) ) |
| 23 | fveq2 | |- ( r = R -> ( 1r ` r ) = ( 1r ` R ) ) |
|
| 24 | 23 2 | eqtr4di | |- ( r = R -> ( 1r ` r ) = .1. ) |
| 25 | 24 | sneqd | |- ( r = R -> { ( 1r ` r ) } = { .1. } ) |
| 26 | 22 25 | imaeq12d | |- ( r = R -> ( `' ( ( ||r ` r ) i^i ( ||r ` ( oppR ` r ) ) ) " { ( 1r ` r ) } ) = ( `' ( .|| i^i E ) " { .1. } ) ) |
| 27 | df-unit | |- Unit = ( r e. _V |-> ( `' ( ( ||r ` r ) i^i ( ||r ` ( oppR ` r ) ) ) " { ( 1r ` r ) } ) ) |
|
| 28 | 3 | fvexi | |- .|| e. _V |
| 29 | 28 | inex1 | |- ( .|| i^i E ) e. _V |
| 30 | 29 | cnvex | |- `' ( .|| i^i E ) e. _V |
| 31 | 30 | imaex | |- ( `' ( .|| i^i E ) " { .1. } ) e. _V |
| 32 | 26 27 31 | fvmpt | |- ( R e. _V -> ( Unit ` R ) = ( `' ( .|| i^i E ) " { .1. } ) ) |
| 33 | 1 32 | eqtrid | |- ( R e. _V -> U = ( `' ( .|| i^i E ) " { .1. } ) ) |
| 34 | 33 | eleq2d | |- ( R e. _V -> ( X e. U <-> X e. ( `' ( .|| i^i E ) " { .1. } ) ) ) |
| 35 | inss1 | |- ( .|| i^i E ) C_ .|| |
|
| 36 | 3 | reldvdsr | |- Rel .|| |
| 37 | relss | |- ( ( .|| i^i E ) C_ .|| -> ( Rel .|| -> Rel ( .|| i^i E ) ) ) |
|
| 38 | 35 36 37 | mp2 | |- Rel ( .|| i^i E ) |
| 39 | eliniseg2 | |- ( Rel ( .|| i^i E ) -> ( X e. ( `' ( .|| i^i E ) " { .1. } ) <-> X ( .|| i^i E ) .1. ) ) |
|
| 40 | 38 39 | ax-mp | |- ( X e. ( `' ( .|| i^i E ) " { .1. } ) <-> X ( .|| i^i E ) .1. ) |
| 41 | brin | |- ( X ( .|| i^i E ) .1. <-> ( X .|| .1. /\ X E .1. ) ) |
|
| 42 | 40 41 | bitri | |- ( X e. ( `' ( .|| i^i E ) " { .1. } ) <-> ( X .|| .1. /\ X E .1. ) ) |
| 43 | 34 42 | bitrdi | |- ( R e. _V -> ( X e. U <-> ( X .|| .1. /\ X E .1. ) ) ) |
| 44 | 8 14 43 | pm5.21nii | |- ( X e. U <-> ( X .|| .1. /\ X E .1. ) ) |