This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying that an element of a group is the identity element. Provides a convenient way to compute the value of the identity element. (Contributed by NM, 24-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinveu.b | |- B = ( Base ` G ) |
|
| grpinveu.p | |- .+ = ( +g ` G ) |
||
| grpinveu.o | |- .0. = ( 0g ` G ) |
||
| Assertion | grpid | |- ( ( G e. Grp /\ X e. B ) -> ( ( X .+ X ) = X <-> .0. = X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinveu.b | |- B = ( Base ` G ) |
|
| 2 | grpinveu.p | |- .+ = ( +g ` G ) |
|
| 3 | grpinveu.o | |- .0. = ( 0g ` G ) |
|
| 4 | eqcom | |- ( .0. = X <-> X = .0. ) |
|
| 5 | 1 3 | grpidcl | |- ( G e. Grp -> .0. e. B ) |
| 6 | 1 2 | grprcan | |- ( ( G e. Grp /\ ( X e. B /\ .0. e. B /\ X e. B ) ) -> ( ( X .+ X ) = ( .0. .+ X ) <-> X = .0. ) ) |
| 7 | 6 | 3exp2 | |- ( G e. Grp -> ( X e. B -> ( .0. e. B -> ( X e. B -> ( ( X .+ X ) = ( .0. .+ X ) <-> X = .0. ) ) ) ) ) |
| 8 | 5 7 | mpid | |- ( G e. Grp -> ( X e. B -> ( X e. B -> ( ( X .+ X ) = ( .0. .+ X ) <-> X = .0. ) ) ) ) |
| 9 | 8 | pm2.43d | |- ( G e. Grp -> ( X e. B -> ( ( X .+ X ) = ( .0. .+ X ) <-> X = .0. ) ) ) |
| 10 | 9 | imp | |- ( ( G e. Grp /\ X e. B ) -> ( ( X .+ X ) = ( .0. .+ X ) <-> X = .0. ) ) |
| 11 | 1 2 3 | grplid | |- ( ( G e. Grp /\ X e. B ) -> ( .0. .+ X ) = X ) |
| 12 | 11 | eqeq2d | |- ( ( G e. Grp /\ X e. B ) -> ( ( X .+ X ) = ( .0. .+ X ) <-> ( X .+ X ) = X ) ) |
| 13 | 10 12 | bitr3d | |- ( ( G e. Grp /\ X e. B ) -> ( X = .0. <-> ( X .+ X ) = X ) ) |
| 14 | 4 13 | bitr2id | |- ( ( G e. Grp /\ X e. B ) -> ( ( X .+ X ) = X <-> .0. = X ) ) |