This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same ring components (properties), one is a division ring iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013) (Revised by Mario Carneiro, 28-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drngprop.b | |- ( Base ` K ) = ( Base ` L ) |
|
| drngprop.p | |- ( +g ` K ) = ( +g ` L ) |
||
| drngprop.m | |- ( .r ` K ) = ( .r ` L ) |
||
| Assertion | drngprop | |- ( K e. DivRing <-> L e. DivRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngprop.b | |- ( Base ` K ) = ( Base ` L ) |
|
| 2 | drngprop.p | |- ( +g ` K ) = ( +g ` L ) |
|
| 3 | drngprop.m | |- ( .r ` K ) = ( .r ` L ) |
|
| 4 | eqidd | |- ( K e. Ring -> ( Base ` K ) = ( Base ` K ) ) |
|
| 5 | 1 | a1i | |- ( K e. Ring -> ( Base ` K ) = ( Base ` L ) ) |
| 6 | 3 | oveqi | |- ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) |
| 7 | 6 | a1i | |- ( ( K e. Ring /\ ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
| 8 | 4 5 7 | unitpropd | |- ( K e. Ring -> ( Unit ` K ) = ( Unit ` L ) ) |
| 9 | 2 | oveqi | |- ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) |
| 10 | 9 | a1i | |- ( ( K e. Ring /\ ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
| 11 | 4 5 10 | grpidpropd | |- ( K e. Ring -> ( 0g ` K ) = ( 0g ` L ) ) |
| 12 | 11 | sneqd | |- ( K e. Ring -> { ( 0g ` K ) } = { ( 0g ` L ) } ) |
| 13 | 12 | difeq2d | |- ( K e. Ring -> ( ( Base ` K ) \ { ( 0g ` K ) } ) = ( ( Base ` K ) \ { ( 0g ` L ) } ) ) |
| 14 | 8 13 | eqeq12d | |- ( K e. Ring -> ( ( Unit ` K ) = ( ( Base ` K ) \ { ( 0g ` K ) } ) <-> ( Unit ` L ) = ( ( Base ` K ) \ { ( 0g ` L ) } ) ) ) |
| 15 | 14 | pm5.32i | |- ( ( K e. Ring /\ ( Unit ` K ) = ( ( Base ` K ) \ { ( 0g ` K ) } ) ) <-> ( K e. Ring /\ ( Unit ` L ) = ( ( Base ` K ) \ { ( 0g ` L ) } ) ) ) |
| 16 | 1 2 3 | ringprop | |- ( K e. Ring <-> L e. Ring ) |
| 17 | 16 | anbi1i | |- ( ( K e. Ring /\ ( Unit ` L ) = ( ( Base ` K ) \ { ( 0g ` L ) } ) ) <-> ( L e. Ring /\ ( Unit ` L ) = ( ( Base ` K ) \ { ( 0g ` L ) } ) ) ) |
| 18 | 15 17 | bitri | |- ( ( K e. Ring /\ ( Unit ` K ) = ( ( Base ` K ) \ { ( 0g ` K ) } ) ) <-> ( L e. Ring /\ ( Unit ` L ) = ( ( Base ` K ) \ { ( 0g ` L ) } ) ) ) |
| 19 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 20 | eqid | |- ( Unit ` K ) = ( Unit ` K ) |
|
| 21 | eqid | |- ( 0g ` K ) = ( 0g ` K ) |
|
| 22 | 19 20 21 | isdrng | |- ( K e. DivRing <-> ( K e. Ring /\ ( Unit ` K ) = ( ( Base ` K ) \ { ( 0g ` K ) } ) ) ) |
| 23 | eqid | |- ( Unit ` L ) = ( Unit ` L ) |
|
| 24 | eqid | |- ( 0g ` L ) = ( 0g ` L ) |
|
| 25 | 1 23 24 | isdrng | |- ( L e. DivRing <-> ( L e. Ring /\ ( Unit ` L ) = ( ( Base ` K ) \ { ( 0g ` L ) } ) ) ) |
| 26 | 18 22 25 | 3bitr4i | |- ( K e. DivRing <-> L e. DivRing ) |