This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of the less than order to an interval gives the same topology as the subspace topology. (Contributed by Mario Carneiro, 9-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ordtrestixx.1 | |- A C_ RR* |
|
| ordtrestixx.2 | |- ( ( x e. A /\ y e. A ) -> ( x [,] y ) C_ A ) |
||
| Assertion | ordtrestixx | |- ( ( ordTop ` <_ ) |`t A ) = ( ordTop ` ( <_ i^i ( A X. A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtrestixx.1 | |- A C_ RR* |
|
| 2 | ordtrestixx.2 | |- ( ( x e. A /\ y e. A ) -> ( x [,] y ) C_ A ) |
|
| 3 | ledm | |- RR* = dom <_ |
|
| 4 | letsr | |- <_ e. TosetRel |
|
| 5 | 4 | a1i | |- ( T. -> <_ e. TosetRel ) |
| 6 | 1 | a1i | |- ( T. -> A C_ RR* ) |
| 7 | 1 | sseli | |- ( x e. A -> x e. RR* ) |
| 8 | 1 | sseli | |- ( y e. A -> y e. RR* ) |
| 9 | iccval | |- ( ( x e. RR* /\ y e. RR* ) -> ( x [,] y ) = { z e. RR* | ( x <_ z /\ z <_ y ) } ) |
|
| 10 | 7 8 9 | syl2an | |- ( ( x e. A /\ y e. A ) -> ( x [,] y ) = { z e. RR* | ( x <_ z /\ z <_ y ) } ) |
| 11 | 10 2 | eqsstrrd | |- ( ( x e. A /\ y e. A ) -> { z e. RR* | ( x <_ z /\ z <_ y ) } C_ A ) |
| 12 | 11 | adantl | |- ( ( T. /\ ( x e. A /\ y e. A ) ) -> { z e. RR* | ( x <_ z /\ z <_ y ) } C_ A ) |
| 13 | 3 5 6 12 | ordtrest2 | |- ( T. -> ( ordTop ` ( <_ i^i ( A X. A ) ) ) = ( ( ordTop ` <_ ) |`t A ) ) |
| 14 | 13 | eqcomd | |- ( T. -> ( ( ordTop ` <_ ) |`t A ) = ( ordTop ` ( <_ i^i ( A X. A ) ) ) ) |
| 15 | 14 | mptru | |- ( ( ordTop ` <_ ) |`t A ) = ( ordTop ` ( <_ i^i ( A X. A ) ) ) |