This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for a closed interval to be a subset of a closed-below, open-above interval. (Contributed by Mario Carneiro, 20-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iccssico2 | |- ( ( C e. ( A [,) B ) /\ D e. ( A [,) B ) ) -> ( C [,] D ) C_ ( A [,) B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ico | |- [,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } ) |
|
| 2 | 1 | elmpocl1 | |- ( C e. ( A [,) B ) -> A e. RR* ) |
| 3 | 2 | adantr | |- ( ( C e. ( A [,) B ) /\ D e. ( A [,) B ) ) -> A e. RR* ) |
| 4 | 1 | elmpocl2 | |- ( C e. ( A [,) B ) -> B e. RR* ) |
| 5 | 4 | adantr | |- ( ( C e. ( A [,) B ) /\ D e. ( A [,) B ) ) -> B e. RR* ) |
| 6 | 1 | elixx3g | |- ( C e. ( A [,) B ) <-> ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ C /\ C < B ) ) ) |
| 7 | 6 | simprbi | |- ( C e. ( A [,) B ) -> ( A <_ C /\ C < B ) ) |
| 8 | 7 | simpld | |- ( C e. ( A [,) B ) -> A <_ C ) |
| 9 | 8 | adantr | |- ( ( C e. ( A [,) B ) /\ D e. ( A [,) B ) ) -> A <_ C ) |
| 10 | 1 | elixx3g | |- ( D e. ( A [,) B ) <-> ( ( A e. RR* /\ B e. RR* /\ D e. RR* ) /\ ( A <_ D /\ D < B ) ) ) |
| 11 | 10 | simprbi | |- ( D e. ( A [,) B ) -> ( A <_ D /\ D < B ) ) |
| 12 | 11 | simprd | |- ( D e. ( A [,) B ) -> D < B ) |
| 13 | 12 | adantl | |- ( ( C e. ( A [,) B ) /\ D e. ( A [,) B ) ) -> D < B ) |
| 14 | iccssico | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A <_ C /\ D < B ) ) -> ( C [,] D ) C_ ( A [,) B ) ) |
|
| 15 | 3 5 9 13 14 | syl22anc | |- ( ( C e. ( A [,) B ) /\ D e. ( A [,) B ) ) -> ( C [,] D ) C_ ( A [,) B ) ) |