This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the isomorphism predicate. We read this as " H is an R , S isomorphism of A onto B ". Normally, R and S are ordering relations on A and B respectively. Definition 6.28 of TakeutiZaring p. 32, whose notation is the same as ours except that R and S are subscripts. (Contributed by NM, 4-Mar-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-isom | |- ( H Isom R , S ( A , B ) <-> ( H : A -1-1-onto-> B /\ A. x e. A A. y e. A ( x R y <-> ( H ` x ) S ( H ` y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cH | |- H |
|
| 1 | cR | |- R |
|
| 2 | cS | |- S |
|
| 3 | cA | |- A |
|
| 4 | cB | |- B |
|
| 5 | 3 4 1 2 0 | wiso | |- H Isom R , S ( A , B ) |
| 6 | 3 4 0 | wf1o | |- H : A -1-1-onto-> B |
| 7 | vx | |- x |
|
| 8 | vy | |- y |
|
| 9 | 7 | cv | |- x |
| 10 | 8 | cv | |- y |
| 11 | 9 10 1 | wbr | |- x R y |
| 12 | 9 0 | cfv | |- ( H ` x ) |
| 13 | 10 0 | cfv | |- ( H ` y ) |
| 14 | 12 13 2 | wbr | |- ( H ` x ) S ( H ` y ) |
| 15 | 11 14 | wb | |- ( x R y <-> ( H ` x ) S ( H ` y ) ) |
| 16 | 15 8 3 | wral | |- A. y e. A ( x R y <-> ( H ` x ) S ( H ` y ) ) |
| 17 | 16 7 3 | wral | |- A. x e. A A. y e. A ( x R y <-> ( H ` x ) S ( H ` y ) ) |
| 18 | 6 17 | wa | |- ( H : A -1-1-onto-> B /\ A. x e. A A. y e. A ( x R y <-> ( H ` x ) S ( H ` y ) ) ) |
| 19 | 5 18 | wb | |- ( H Isom R , S ( A , B ) <-> ( H : A -1-1-onto-> B /\ A. x e. A A. y e. A ( x R y <-> ( H ` x ) S ( H ` y ) ) ) ) |