This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The unit interval expressed as an order topology. (Contributed by Mario Carneiro, 9-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfii5 | |- II = ( ordTop ` ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfii2 | |- II = ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) |
|
| 2 | unitssre | |- ( 0 [,] 1 ) C_ RR |
|
| 3 | eqid | |- ( ordTop ` <_ ) = ( ordTop ` <_ ) |
|
| 4 | eqid | |- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
|
| 5 | 3 4 | xrrest | |- ( ( 0 [,] 1 ) C_ RR -> ( ( ordTop ` <_ ) |`t ( 0 [,] 1 ) ) = ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) ) |
| 6 | 2 5 | ax-mp | |- ( ( ordTop ` <_ ) |`t ( 0 [,] 1 ) ) = ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) |
| 7 | ordtresticc | |- ( ( ordTop ` <_ ) |`t ( 0 [,] 1 ) ) = ( ordTop ` ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) |
|
| 8 | 1 6 7 | 3eqtr2i | |- II = ( ordTop ` ( <_ i^i ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) |