This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Apply a homomorphism to a sequence. (Contributed by Mario Carneiro, 28-Jul-2013) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqhomo.1 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
|
| seqhomo.2 | |- ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) e. S ) |
||
| seqhomo.3 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
||
| seqhomo.4 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( H ` ( x .+ y ) ) = ( ( H ` x ) Q ( H ` y ) ) ) |
||
| seqhomo.5 | |- ( ( ph /\ x e. ( M ... N ) ) -> ( H ` ( F ` x ) ) = ( G ` x ) ) |
||
| Assertion | seqhomo | |- ( ph -> ( H ` ( seq M ( .+ , F ) ` N ) ) = ( seq M ( Q , G ) ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqhomo.1 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
|
| 2 | seqhomo.2 | |- ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) e. S ) |
|
| 3 | seqhomo.3 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 4 | seqhomo.4 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( H ` ( x .+ y ) ) = ( ( H ` x ) Q ( H ` y ) ) ) |
|
| 5 | seqhomo.5 | |- ( ( ph /\ x e. ( M ... N ) ) -> ( H ` ( F ` x ) ) = ( G ` x ) ) |
|
| 6 | eluzfz2 | |- ( N e. ( ZZ>= ` M ) -> N e. ( M ... N ) ) |
|
| 7 | 3 6 | syl | |- ( ph -> N e. ( M ... N ) ) |
| 8 | eleq1 | |- ( x = M -> ( x e. ( M ... N ) <-> M e. ( M ... N ) ) ) |
|
| 9 | 2fveq3 | |- ( x = M -> ( H ` ( seq M ( .+ , F ) ` x ) ) = ( H ` ( seq M ( .+ , F ) ` M ) ) ) |
|
| 10 | fveq2 | |- ( x = M -> ( seq M ( Q , G ) ` x ) = ( seq M ( Q , G ) ` M ) ) |
|
| 11 | 9 10 | eqeq12d | |- ( x = M -> ( ( H ` ( seq M ( .+ , F ) ` x ) ) = ( seq M ( Q , G ) ` x ) <-> ( H ` ( seq M ( .+ , F ) ` M ) ) = ( seq M ( Q , G ) ` M ) ) ) |
| 12 | 8 11 | imbi12d | |- ( x = M -> ( ( x e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` x ) ) = ( seq M ( Q , G ) ` x ) ) <-> ( M e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` M ) ) = ( seq M ( Q , G ) ` M ) ) ) ) |
| 13 | 12 | imbi2d | |- ( x = M -> ( ( ph -> ( x e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` x ) ) = ( seq M ( Q , G ) ` x ) ) ) <-> ( ph -> ( M e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` M ) ) = ( seq M ( Q , G ) ` M ) ) ) ) ) |
| 14 | eleq1 | |- ( x = n -> ( x e. ( M ... N ) <-> n e. ( M ... N ) ) ) |
|
| 15 | 2fveq3 | |- ( x = n -> ( H ` ( seq M ( .+ , F ) ` x ) ) = ( H ` ( seq M ( .+ , F ) ` n ) ) ) |
|
| 16 | fveq2 | |- ( x = n -> ( seq M ( Q , G ) ` x ) = ( seq M ( Q , G ) ` n ) ) |
|
| 17 | 15 16 | eqeq12d | |- ( x = n -> ( ( H ` ( seq M ( .+ , F ) ` x ) ) = ( seq M ( Q , G ) ` x ) <-> ( H ` ( seq M ( .+ , F ) ` n ) ) = ( seq M ( Q , G ) ` n ) ) ) |
| 18 | 14 17 | imbi12d | |- ( x = n -> ( ( x e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` x ) ) = ( seq M ( Q , G ) ` x ) ) <-> ( n e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` n ) ) = ( seq M ( Q , G ) ` n ) ) ) ) |
| 19 | 18 | imbi2d | |- ( x = n -> ( ( ph -> ( x e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` x ) ) = ( seq M ( Q , G ) ` x ) ) ) <-> ( ph -> ( n e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` n ) ) = ( seq M ( Q , G ) ` n ) ) ) ) ) |
| 20 | eleq1 | |- ( x = ( n + 1 ) -> ( x e. ( M ... N ) <-> ( n + 1 ) e. ( M ... N ) ) ) |
|
| 21 | 2fveq3 | |- ( x = ( n + 1 ) -> ( H ` ( seq M ( .+ , F ) ` x ) ) = ( H ` ( seq M ( .+ , F ) ` ( n + 1 ) ) ) ) |
|
| 22 | fveq2 | |- ( x = ( n + 1 ) -> ( seq M ( Q , G ) ` x ) = ( seq M ( Q , G ) ` ( n + 1 ) ) ) |
|
| 23 | 21 22 | eqeq12d | |- ( x = ( n + 1 ) -> ( ( H ` ( seq M ( .+ , F ) ` x ) ) = ( seq M ( Q , G ) ` x ) <-> ( H ` ( seq M ( .+ , F ) ` ( n + 1 ) ) ) = ( seq M ( Q , G ) ` ( n + 1 ) ) ) ) |
| 24 | 20 23 | imbi12d | |- ( x = ( n + 1 ) -> ( ( x e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` x ) ) = ( seq M ( Q , G ) ` x ) ) <-> ( ( n + 1 ) e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` ( n + 1 ) ) ) = ( seq M ( Q , G ) ` ( n + 1 ) ) ) ) ) |
| 25 | 24 | imbi2d | |- ( x = ( n + 1 ) -> ( ( ph -> ( x e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` x ) ) = ( seq M ( Q , G ) ` x ) ) ) <-> ( ph -> ( ( n + 1 ) e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` ( n + 1 ) ) ) = ( seq M ( Q , G ) ` ( n + 1 ) ) ) ) ) ) |
| 26 | eleq1 | |- ( x = N -> ( x e. ( M ... N ) <-> N e. ( M ... N ) ) ) |
|
| 27 | 2fveq3 | |- ( x = N -> ( H ` ( seq M ( .+ , F ) ` x ) ) = ( H ` ( seq M ( .+ , F ) ` N ) ) ) |
|
| 28 | fveq2 | |- ( x = N -> ( seq M ( Q , G ) ` x ) = ( seq M ( Q , G ) ` N ) ) |
|
| 29 | 27 28 | eqeq12d | |- ( x = N -> ( ( H ` ( seq M ( .+ , F ) ` x ) ) = ( seq M ( Q , G ) ` x ) <-> ( H ` ( seq M ( .+ , F ) ` N ) ) = ( seq M ( Q , G ) ` N ) ) ) |
| 30 | 26 29 | imbi12d | |- ( x = N -> ( ( x e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` x ) ) = ( seq M ( Q , G ) ` x ) ) <-> ( N e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` N ) ) = ( seq M ( Q , G ) ` N ) ) ) ) |
| 31 | 30 | imbi2d | |- ( x = N -> ( ( ph -> ( x e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` x ) ) = ( seq M ( Q , G ) ` x ) ) ) <-> ( ph -> ( N e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` N ) ) = ( seq M ( Q , G ) ` N ) ) ) ) ) |
| 32 | 2fveq3 | |- ( x = M -> ( H ` ( F ` x ) ) = ( H ` ( F ` M ) ) ) |
|
| 33 | fveq2 | |- ( x = M -> ( G ` x ) = ( G ` M ) ) |
|
| 34 | 32 33 | eqeq12d | |- ( x = M -> ( ( H ` ( F ` x ) ) = ( G ` x ) <-> ( H ` ( F ` M ) ) = ( G ` M ) ) ) |
| 35 | 5 | ralrimiva | |- ( ph -> A. x e. ( M ... N ) ( H ` ( F ` x ) ) = ( G ` x ) ) |
| 36 | eluzfz1 | |- ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) ) |
|
| 37 | 3 36 | syl | |- ( ph -> M e. ( M ... N ) ) |
| 38 | 34 35 37 | rspcdva | |- ( ph -> ( H ` ( F ` M ) ) = ( G ` M ) ) |
| 39 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 40 | seq1 | |- ( M e. ZZ -> ( seq M ( .+ , F ) ` M ) = ( F ` M ) ) |
|
| 41 | 3 39 40 | 3syl | |- ( ph -> ( seq M ( .+ , F ) ` M ) = ( F ` M ) ) |
| 42 | 41 | fveq2d | |- ( ph -> ( H ` ( seq M ( .+ , F ) ` M ) ) = ( H ` ( F ` M ) ) ) |
| 43 | seq1 | |- ( M e. ZZ -> ( seq M ( Q , G ) ` M ) = ( G ` M ) ) |
|
| 44 | 3 39 43 | 3syl | |- ( ph -> ( seq M ( Q , G ) ` M ) = ( G ` M ) ) |
| 45 | 38 42 44 | 3eqtr4d | |- ( ph -> ( H ` ( seq M ( .+ , F ) ` M ) ) = ( seq M ( Q , G ) ` M ) ) |
| 46 | 45 | a1d | |- ( ph -> ( M e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` M ) ) = ( seq M ( Q , G ) ` M ) ) ) |
| 47 | peano2fzr | |- ( ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) -> n e. ( M ... N ) ) |
|
| 48 | 47 | adantl | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> n e. ( M ... N ) ) |
| 49 | 48 | expr | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( n + 1 ) e. ( M ... N ) -> n e. ( M ... N ) ) ) |
| 50 | 49 | imim1d | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( n e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` n ) ) = ( seq M ( Q , G ) ` n ) ) -> ( ( n + 1 ) e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` n ) ) = ( seq M ( Q , G ) ` n ) ) ) ) |
| 51 | oveq1 | |- ( ( H ` ( seq M ( .+ , F ) ` n ) ) = ( seq M ( Q , G ) ` n ) -> ( ( H ` ( seq M ( .+ , F ) ` n ) ) Q ( G ` ( n + 1 ) ) ) = ( ( seq M ( Q , G ) ` n ) Q ( G ` ( n + 1 ) ) ) ) |
|
| 52 | seqp1 | |- ( n e. ( ZZ>= ` M ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) |
|
| 53 | 52 | ad2antrl | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( seq M ( .+ , F ) ` ( n + 1 ) ) = ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) |
| 54 | 53 | fveq2d | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( H ` ( seq M ( .+ , F ) ` ( n + 1 ) ) ) = ( H ` ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) ) |
| 55 | 4 | ralrimivva | |- ( ph -> A. x e. S A. y e. S ( H ` ( x .+ y ) ) = ( ( H ` x ) Q ( H ` y ) ) ) |
| 56 | 55 | adantr | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> A. x e. S A. y e. S ( H ` ( x .+ y ) ) = ( ( H ` x ) Q ( H ` y ) ) ) |
| 57 | simprl | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> n e. ( ZZ>= ` M ) ) |
|
| 58 | elfzuz3 | |- ( n e. ( M ... N ) -> N e. ( ZZ>= ` n ) ) |
|
| 59 | fzss2 | |- ( N e. ( ZZ>= ` n ) -> ( M ... n ) C_ ( M ... N ) ) |
|
| 60 | 48 58 59 | 3syl | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( M ... n ) C_ ( M ... N ) ) |
| 61 | 60 | sselda | |- ( ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) /\ x e. ( M ... n ) ) -> x e. ( M ... N ) ) |
| 62 | 2 | adantlr | |- ( ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) /\ x e. ( M ... N ) ) -> ( F ` x ) e. S ) |
| 63 | 61 62 | syldan | |- ( ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) /\ x e. ( M ... n ) ) -> ( F ` x ) e. S ) |
| 64 | 1 | adantlr | |- ( ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
| 65 | 57 63 64 | seqcl | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( seq M ( .+ , F ) ` n ) e. S ) |
| 66 | fveq2 | |- ( x = ( n + 1 ) -> ( F ` x ) = ( F ` ( n + 1 ) ) ) |
|
| 67 | 66 | eleq1d | |- ( x = ( n + 1 ) -> ( ( F ` x ) e. S <-> ( F ` ( n + 1 ) ) e. S ) ) |
| 68 | 2 | ralrimiva | |- ( ph -> A. x e. ( M ... N ) ( F ` x ) e. S ) |
| 69 | 68 | adantr | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> A. x e. ( M ... N ) ( F ` x ) e. S ) |
| 70 | simprr | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( n + 1 ) e. ( M ... N ) ) |
|
| 71 | 67 69 70 | rspcdva | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( F ` ( n + 1 ) ) e. S ) |
| 72 | fvoveq1 | |- ( x = ( seq M ( .+ , F ) ` n ) -> ( H ` ( x .+ y ) ) = ( H ` ( ( seq M ( .+ , F ) ` n ) .+ y ) ) ) |
|
| 73 | fveq2 | |- ( x = ( seq M ( .+ , F ) ` n ) -> ( H ` x ) = ( H ` ( seq M ( .+ , F ) ` n ) ) ) |
|
| 74 | 73 | oveq1d | |- ( x = ( seq M ( .+ , F ) ` n ) -> ( ( H ` x ) Q ( H ` y ) ) = ( ( H ` ( seq M ( .+ , F ) ` n ) ) Q ( H ` y ) ) ) |
| 75 | 72 74 | eqeq12d | |- ( x = ( seq M ( .+ , F ) ` n ) -> ( ( H ` ( x .+ y ) ) = ( ( H ` x ) Q ( H ` y ) ) <-> ( H ` ( ( seq M ( .+ , F ) ` n ) .+ y ) ) = ( ( H ` ( seq M ( .+ , F ) ` n ) ) Q ( H ` y ) ) ) ) |
| 76 | oveq2 | |- ( y = ( F ` ( n + 1 ) ) -> ( ( seq M ( .+ , F ) ` n ) .+ y ) = ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) |
|
| 77 | 76 | fveq2d | |- ( y = ( F ` ( n + 1 ) ) -> ( H ` ( ( seq M ( .+ , F ) ` n ) .+ y ) ) = ( H ` ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) ) |
| 78 | fveq2 | |- ( y = ( F ` ( n + 1 ) ) -> ( H ` y ) = ( H ` ( F ` ( n + 1 ) ) ) ) |
|
| 79 | 78 | oveq2d | |- ( y = ( F ` ( n + 1 ) ) -> ( ( H ` ( seq M ( .+ , F ) ` n ) ) Q ( H ` y ) ) = ( ( H ` ( seq M ( .+ , F ) ` n ) ) Q ( H ` ( F ` ( n + 1 ) ) ) ) ) |
| 80 | 77 79 | eqeq12d | |- ( y = ( F ` ( n + 1 ) ) -> ( ( H ` ( ( seq M ( .+ , F ) ` n ) .+ y ) ) = ( ( H ` ( seq M ( .+ , F ) ` n ) ) Q ( H ` y ) ) <-> ( H ` ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) = ( ( H ` ( seq M ( .+ , F ) ` n ) ) Q ( H ` ( F ` ( n + 1 ) ) ) ) ) ) |
| 81 | 75 80 | rspc2v | |- ( ( ( seq M ( .+ , F ) ` n ) e. S /\ ( F ` ( n + 1 ) ) e. S ) -> ( A. x e. S A. y e. S ( H ` ( x .+ y ) ) = ( ( H ` x ) Q ( H ` y ) ) -> ( H ` ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) = ( ( H ` ( seq M ( .+ , F ) ` n ) ) Q ( H ` ( F ` ( n + 1 ) ) ) ) ) ) |
| 82 | 65 71 81 | syl2anc | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( A. x e. S A. y e. S ( H ` ( x .+ y ) ) = ( ( H ` x ) Q ( H ` y ) ) -> ( H ` ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) = ( ( H ` ( seq M ( .+ , F ) ` n ) ) Q ( H ` ( F ` ( n + 1 ) ) ) ) ) ) |
| 83 | 56 82 | mpd | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( H ` ( ( seq M ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) = ( ( H ` ( seq M ( .+ , F ) ` n ) ) Q ( H ` ( F ` ( n + 1 ) ) ) ) ) |
| 84 | 2fveq3 | |- ( x = ( n + 1 ) -> ( H ` ( F ` x ) ) = ( H ` ( F ` ( n + 1 ) ) ) ) |
|
| 85 | fveq2 | |- ( x = ( n + 1 ) -> ( G ` x ) = ( G ` ( n + 1 ) ) ) |
|
| 86 | 84 85 | eqeq12d | |- ( x = ( n + 1 ) -> ( ( H ` ( F ` x ) ) = ( G ` x ) <-> ( H ` ( F ` ( n + 1 ) ) ) = ( G ` ( n + 1 ) ) ) ) |
| 87 | 35 | adantr | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> A. x e. ( M ... N ) ( H ` ( F ` x ) ) = ( G ` x ) ) |
| 88 | 86 87 70 | rspcdva | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( H ` ( F ` ( n + 1 ) ) ) = ( G ` ( n + 1 ) ) ) |
| 89 | 88 | oveq2d | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( ( H ` ( seq M ( .+ , F ) ` n ) ) Q ( H ` ( F ` ( n + 1 ) ) ) ) = ( ( H ` ( seq M ( .+ , F ) ` n ) ) Q ( G ` ( n + 1 ) ) ) ) |
| 90 | 54 83 89 | 3eqtrd | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( H ` ( seq M ( .+ , F ) ` ( n + 1 ) ) ) = ( ( H ` ( seq M ( .+ , F ) ` n ) ) Q ( G ` ( n + 1 ) ) ) ) |
| 91 | seqp1 | |- ( n e. ( ZZ>= ` M ) -> ( seq M ( Q , G ) ` ( n + 1 ) ) = ( ( seq M ( Q , G ) ` n ) Q ( G ` ( n + 1 ) ) ) ) |
|
| 92 | 91 | ad2antrl | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( seq M ( Q , G ) ` ( n + 1 ) ) = ( ( seq M ( Q , G ) ` n ) Q ( G ` ( n + 1 ) ) ) ) |
| 93 | 90 92 | eqeq12d | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( ( H ` ( seq M ( .+ , F ) ` ( n + 1 ) ) ) = ( seq M ( Q , G ) ` ( n + 1 ) ) <-> ( ( H ` ( seq M ( .+ , F ) ` n ) ) Q ( G ` ( n + 1 ) ) ) = ( ( seq M ( Q , G ) ` n ) Q ( G ` ( n + 1 ) ) ) ) ) |
| 94 | 51 93 | imbitrrid | |- ( ( ph /\ ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) ) -> ( ( H ` ( seq M ( .+ , F ) ` n ) ) = ( seq M ( Q , G ) ` n ) -> ( H ` ( seq M ( .+ , F ) ` ( n + 1 ) ) ) = ( seq M ( Q , G ) ` ( n + 1 ) ) ) ) |
| 95 | 50 94 | animpimp2impd | |- ( n e. ( ZZ>= ` M ) -> ( ( ph -> ( n e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` n ) ) = ( seq M ( Q , G ) ` n ) ) ) -> ( ph -> ( ( n + 1 ) e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` ( n + 1 ) ) ) = ( seq M ( Q , G ) ` ( n + 1 ) ) ) ) ) ) |
| 96 | 13 19 25 31 46 95 | uzind4i | |- ( N e. ( ZZ>= ` M ) -> ( ph -> ( N e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` N ) ) = ( seq M ( Q , G ) ` N ) ) ) ) |
| 97 | 3 96 | mpcom | |- ( ph -> ( N e. ( M ... N ) -> ( H ` ( seq M ( .+ , F ) ` N ) ) = ( seq M ( Q , G ) ` N ) ) ) |
| 98 | 7 97 | mpd | |- ( ph -> ( H ` ( seq M ( .+ , F ) ` N ) ) = ( seq M ( Q , G ) ` N ) ) |