This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Centralizers in a monoid are preserved by monoid homomorphisms. (Contributed by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzmhm.z | |- Z = ( Cntz ` G ) |
|
| cntzmhm.y | |- Y = ( Cntz ` H ) |
||
| Assertion | cntzmhm2 | |- ( ( F e. ( G MndHom H ) /\ S C_ ( Z ` T ) ) -> ( F " S ) C_ ( Y ` ( F " T ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzmhm.z | |- Z = ( Cntz ` G ) |
|
| 2 | cntzmhm.y | |- Y = ( Cntz ` H ) |
|
| 3 | 1 2 | cntzmhm | |- ( ( F e. ( G MndHom H ) /\ x e. ( Z ` T ) ) -> ( F ` x ) e. ( Y ` ( F " T ) ) ) |
| 4 | 3 | ralrimiva | |- ( F e. ( G MndHom H ) -> A. x e. ( Z ` T ) ( F ` x ) e. ( Y ` ( F " T ) ) ) |
| 5 | ssralv | |- ( S C_ ( Z ` T ) -> ( A. x e. ( Z ` T ) ( F ` x ) e. ( Y ` ( F " T ) ) -> A. x e. S ( F ` x ) e. ( Y ` ( F " T ) ) ) ) |
|
| 6 | 4 5 | mpan9 | |- ( ( F e. ( G MndHom H ) /\ S C_ ( Z ` T ) ) -> A. x e. S ( F ` x ) e. ( Y ` ( F " T ) ) ) |
| 7 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 8 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 9 | 7 8 | mhmf | |- ( F e. ( G MndHom H ) -> F : ( Base ` G ) --> ( Base ` H ) ) |
| 10 | 9 | adantr | |- ( ( F e. ( G MndHom H ) /\ S C_ ( Z ` T ) ) -> F : ( Base ` G ) --> ( Base ` H ) ) |
| 11 | 10 | ffund | |- ( ( F e. ( G MndHom H ) /\ S C_ ( Z ` T ) ) -> Fun F ) |
| 12 | simpr | |- ( ( F e. ( G MndHom H ) /\ S C_ ( Z ` T ) ) -> S C_ ( Z ` T ) ) |
|
| 13 | 7 1 | cntzssv | |- ( Z ` T ) C_ ( Base ` G ) |
| 14 | 12 13 | sstrdi | |- ( ( F e. ( G MndHom H ) /\ S C_ ( Z ` T ) ) -> S C_ ( Base ` G ) ) |
| 15 | 10 | fdmd | |- ( ( F e. ( G MndHom H ) /\ S C_ ( Z ` T ) ) -> dom F = ( Base ` G ) ) |
| 16 | 14 15 | sseqtrrd | |- ( ( F e. ( G MndHom H ) /\ S C_ ( Z ` T ) ) -> S C_ dom F ) |
| 17 | funimass4 | |- ( ( Fun F /\ S C_ dom F ) -> ( ( F " S ) C_ ( Y ` ( F " T ) ) <-> A. x e. S ( F ` x ) e. ( Y ` ( F " T ) ) ) ) |
|
| 18 | 11 16 17 | syl2anc | |- ( ( F e. ( G MndHom H ) /\ S C_ ( Z ` T ) ) -> ( ( F " S ) C_ ( Y ` ( F " T ) ) <-> A. x e. S ( F ` x ) e. ( Y ` ( F " T ) ) ) ) |
| 19 | 6 18 | mpbird | |- ( ( F e. ( G MndHom H ) /\ S C_ ( Z ` T ) ) -> ( F " S ) C_ ( Y ` ( F " T ) ) ) |