This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Summation by parts. (Contributed by Mario Carneiro, 13-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumparts.b | |- ( k = j -> ( A = B /\ V = W ) ) |
|
| fsumparts.c | |- ( k = ( j + 1 ) -> ( A = C /\ V = X ) ) |
||
| fsumparts.d | |- ( k = M -> ( A = D /\ V = Y ) ) |
||
| fsumparts.e | |- ( k = N -> ( A = E /\ V = Z ) ) |
||
| fsumparts.1 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
||
| fsumparts.2 | |- ( ( ph /\ k e. ( M ... N ) ) -> A e. CC ) |
||
| fsumparts.3 | |- ( ( ph /\ k e. ( M ... N ) ) -> V e. CC ) |
||
| Assertion | fsumparts | |- ( ph -> sum_ j e. ( M ..^ N ) ( B x. ( X - W ) ) = ( ( ( E x. Z ) - ( D x. Y ) ) - sum_ j e. ( M ..^ N ) ( ( C - B ) x. X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumparts.b | |- ( k = j -> ( A = B /\ V = W ) ) |
|
| 2 | fsumparts.c | |- ( k = ( j + 1 ) -> ( A = C /\ V = X ) ) |
|
| 3 | fsumparts.d | |- ( k = M -> ( A = D /\ V = Y ) ) |
|
| 4 | fsumparts.e | |- ( k = N -> ( A = E /\ V = Z ) ) |
|
| 5 | fsumparts.1 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 6 | fsumparts.2 | |- ( ( ph /\ k e. ( M ... N ) ) -> A e. CC ) |
|
| 7 | fsumparts.3 | |- ( ( ph /\ k e. ( M ... N ) ) -> V e. CC ) |
|
| 8 | sum0 | |- sum_ j e. (/) ( B x. ( X - W ) ) = 0 |
|
| 9 | 0m0e0 | |- ( 0 - 0 ) = 0 |
|
| 10 | 8 9 | eqtr4i | |- sum_ j e. (/) ( B x. ( X - W ) ) = ( 0 - 0 ) |
| 11 | simpr | |- ( ( ph /\ N = M ) -> N = M ) |
|
| 12 | 11 | oveq2d | |- ( ( ph /\ N = M ) -> ( M ..^ N ) = ( M ..^ M ) ) |
| 13 | fzo0 | |- ( M ..^ M ) = (/) |
|
| 14 | 12 13 | eqtrdi | |- ( ( ph /\ N = M ) -> ( M ..^ N ) = (/) ) |
| 15 | 14 | sumeq1d | |- ( ( ph /\ N = M ) -> sum_ j e. ( M ..^ N ) ( B x. ( X - W ) ) = sum_ j e. (/) ( B x. ( X - W ) ) ) |
| 16 | eluzfz1 | |- ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) ) |
|
| 17 | 5 16 | syl | |- ( ph -> M e. ( M ... N ) ) |
| 18 | eqtr3 | |- ( ( k = M /\ N = M ) -> k = N ) |
|
| 19 | oveq12 | |- ( ( A = E /\ V = Z ) -> ( A x. V ) = ( E x. Z ) ) |
|
| 20 | 18 4 19 | 3syl | |- ( ( k = M /\ N = M ) -> ( A x. V ) = ( E x. Z ) ) |
| 21 | oveq12 | |- ( ( A = D /\ V = Y ) -> ( A x. V ) = ( D x. Y ) ) |
|
| 22 | 3 21 | syl | |- ( k = M -> ( A x. V ) = ( D x. Y ) ) |
| 23 | 22 | adantr | |- ( ( k = M /\ N = M ) -> ( A x. V ) = ( D x. Y ) ) |
| 24 | 20 23 | eqeq12d | |- ( ( k = M /\ N = M ) -> ( ( A x. V ) = ( A x. V ) <-> ( E x. Z ) = ( D x. Y ) ) ) |
| 25 | 24 | pm5.74da | |- ( k = M -> ( ( N = M -> ( A x. V ) = ( A x. V ) ) <-> ( N = M -> ( E x. Z ) = ( D x. Y ) ) ) ) |
| 26 | eqidd | |- ( N = M -> ( A x. V ) = ( A x. V ) ) |
|
| 27 | 25 26 | vtoclg | |- ( M e. ( M ... N ) -> ( N = M -> ( E x. Z ) = ( D x. Y ) ) ) |
| 28 | 27 | imp | |- ( ( M e. ( M ... N ) /\ N = M ) -> ( E x. Z ) = ( D x. Y ) ) |
| 29 | 17 28 | sylan | |- ( ( ph /\ N = M ) -> ( E x. Z ) = ( D x. Y ) ) |
| 30 | 29 | oveq1d | |- ( ( ph /\ N = M ) -> ( ( E x. Z ) - ( D x. Y ) ) = ( ( D x. Y ) - ( D x. Y ) ) ) |
| 31 | 3 | simpld | |- ( k = M -> A = D ) |
| 32 | 31 | eleq1d | |- ( k = M -> ( A e. CC <-> D e. CC ) ) |
| 33 | 6 | ralrimiva | |- ( ph -> A. k e. ( M ... N ) A e. CC ) |
| 34 | 32 33 17 | rspcdva | |- ( ph -> D e. CC ) |
| 35 | 3 | simprd | |- ( k = M -> V = Y ) |
| 36 | 35 | eleq1d | |- ( k = M -> ( V e. CC <-> Y e. CC ) ) |
| 37 | 7 | ralrimiva | |- ( ph -> A. k e. ( M ... N ) V e. CC ) |
| 38 | 36 37 17 | rspcdva | |- ( ph -> Y e. CC ) |
| 39 | 34 38 | mulcld | |- ( ph -> ( D x. Y ) e. CC ) |
| 40 | 39 | subidd | |- ( ph -> ( ( D x. Y ) - ( D x. Y ) ) = 0 ) |
| 41 | 40 | adantr | |- ( ( ph /\ N = M ) -> ( ( D x. Y ) - ( D x. Y ) ) = 0 ) |
| 42 | 30 41 | eqtrd | |- ( ( ph /\ N = M ) -> ( ( E x. Z ) - ( D x. Y ) ) = 0 ) |
| 43 | 14 | sumeq1d | |- ( ( ph /\ N = M ) -> sum_ j e. ( M ..^ N ) ( ( C - B ) x. X ) = sum_ j e. (/) ( ( C - B ) x. X ) ) |
| 44 | sum0 | |- sum_ j e. (/) ( ( C - B ) x. X ) = 0 |
|
| 45 | 43 44 | eqtrdi | |- ( ( ph /\ N = M ) -> sum_ j e. ( M ..^ N ) ( ( C - B ) x. X ) = 0 ) |
| 46 | 42 45 | oveq12d | |- ( ( ph /\ N = M ) -> ( ( ( E x. Z ) - ( D x. Y ) ) - sum_ j e. ( M ..^ N ) ( ( C - B ) x. X ) ) = ( 0 - 0 ) ) |
| 47 | 10 15 46 | 3eqtr4a | |- ( ( ph /\ N = M ) -> sum_ j e. ( M ..^ N ) ( B x. ( X - W ) ) = ( ( ( E x. Z ) - ( D x. Y ) ) - sum_ j e. ( M ..^ N ) ( ( C - B ) x. X ) ) ) |
| 48 | fzofi | |- ( ( M + 1 ) ..^ N ) e. Fin |
|
| 49 | 48 | a1i | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( M + 1 ) ..^ N ) e. Fin ) |
| 50 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 51 | 5 50 | syl | |- ( ph -> M e. ZZ ) |
| 52 | 51 | adantr | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> M e. ZZ ) |
| 53 | uzid | |- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
|
| 54 | peano2uz | |- ( M e. ( ZZ>= ` M ) -> ( M + 1 ) e. ( ZZ>= ` M ) ) |
|
| 55 | fzoss1 | |- ( ( M + 1 ) e. ( ZZ>= ` M ) -> ( ( M + 1 ) ..^ N ) C_ ( M ..^ N ) ) |
|
| 56 | 52 53 54 55 | 4syl | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( M + 1 ) ..^ N ) C_ ( M ..^ N ) ) |
| 57 | 56 | sselda | |- ( ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( ( M + 1 ) ..^ N ) ) -> k e. ( M ..^ N ) ) |
| 58 | elfzofz | |- ( k e. ( M ..^ N ) -> k e. ( M ... N ) ) |
|
| 59 | 6 7 | mulcld | |- ( ( ph /\ k e. ( M ... N ) ) -> ( A x. V ) e. CC ) |
| 60 | 58 59 | sylan2 | |- ( ( ph /\ k e. ( M ..^ N ) ) -> ( A x. V ) e. CC ) |
| 61 | 60 | adantlr | |- ( ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( M ..^ N ) ) -> ( A x. V ) e. CC ) |
| 62 | 57 61 | syldan | |- ( ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( ( M + 1 ) ..^ N ) ) -> ( A x. V ) e. CC ) |
| 63 | 49 62 | fsumcl | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) e. CC ) |
| 64 | 4 | simpld | |- ( k = N -> A = E ) |
| 65 | 64 | eleq1d | |- ( k = N -> ( A e. CC <-> E e. CC ) ) |
| 66 | eluzfz2 | |- ( N e. ( ZZ>= ` M ) -> N e. ( M ... N ) ) |
|
| 67 | 5 66 | syl | |- ( ph -> N e. ( M ... N ) ) |
| 68 | 65 33 67 | rspcdva | |- ( ph -> E e. CC ) |
| 69 | 4 | simprd | |- ( k = N -> V = Z ) |
| 70 | 69 | eleq1d | |- ( k = N -> ( V e. CC <-> Z e. CC ) ) |
| 71 | 70 37 67 | rspcdva | |- ( ph -> Z e. CC ) |
| 72 | 68 71 | mulcld | |- ( ph -> ( E x. Z ) e. CC ) |
| 73 | 72 | adantr | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( E x. Z ) e. CC ) |
| 74 | simpr | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> N e. ( ZZ>= ` ( M + 1 ) ) ) |
|
| 75 | fzp1ss | |- ( M e. ZZ -> ( ( M + 1 ) ... N ) C_ ( M ... N ) ) |
|
| 76 | 52 75 | syl | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( M + 1 ) ... N ) C_ ( M ... N ) ) |
| 77 | 76 | sselda | |- ( ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( ( M + 1 ) ... N ) ) -> k e. ( M ... N ) ) |
| 78 | 59 | adantlr | |- ( ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( M ... N ) ) -> ( A x. V ) e. CC ) |
| 79 | 77 78 | syldan | |- ( ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( ( M + 1 ) ... N ) ) -> ( A x. V ) e. CC ) |
| 80 | 4 19 | syl | |- ( k = N -> ( A x. V ) = ( E x. Z ) ) |
| 81 | 74 79 80 | fsumm1 | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ k e. ( ( M + 1 ) ... N ) ( A x. V ) = ( sum_ k e. ( ( M + 1 ) ... ( N - 1 ) ) ( A x. V ) + ( E x. Z ) ) ) |
| 82 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 83 | 5 82 | syl | |- ( ph -> N e. ZZ ) |
| 84 | 83 | adantr | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> N e. ZZ ) |
| 85 | fzoval | |- ( N e. ZZ -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
|
| 86 | 84 85 | syl | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
| 87 | 52 | zcnd | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> M e. CC ) |
| 88 | ax-1cn | |- 1 e. CC |
|
| 89 | pncan | |- ( ( M e. CC /\ 1 e. CC ) -> ( ( M + 1 ) - 1 ) = M ) |
|
| 90 | 87 88 89 | sylancl | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( M + 1 ) - 1 ) = M ) |
| 91 | 90 | oveq1d | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( ( M + 1 ) - 1 ) ... ( N - 1 ) ) = ( M ... ( N - 1 ) ) ) |
| 92 | 86 91 | eqtr4d | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( M ..^ N ) = ( ( ( M + 1 ) - 1 ) ... ( N - 1 ) ) ) |
| 93 | 92 | sumeq1d | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ j e. ( M ..^ N ) ( C x. X ) = sum_ j e. ( ( ( M + 1 ) - 1 ) ... ( N - 1 ) ) ( C x. X ) ) |
| 94 | 1zzd | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> 1 e. ZZ ) |
|
| 95 | 52 | peano2zd | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( M + 1 ) e. ZZ ) |
| 96 | oveq12 | |- ( ( A = C /\ V = X ) -> ( A x. V ) = ( C x. X ) ) |
|
| 97 | 2 96 | syl | |- ( k = ( j + 1 ) -> ( A x. V ) = ( C x. X ) ) |
| 98 | 94 95 84 79 97 | fsumshftm | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ k e. ( ( M + 1 ) ... N ) ( A x. V ) = sum_ j e. ( ( ( M + 1 ) - 1 ) ... ( N - 1 ) ) ( C x. X ) ) |
| 99 | 93 98 | eqtr4d | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ j e. ( M ..^ N ) ( C x. X ) = sum_ k e. ( ( M + 1 ) ... N ) ( A x. V ) ) |
| 100 | fzoval | |- ( N e. ZZ -> ( ( M + 1 ) ..^ N ) = ( ( M + 1 ) ... ( N - 1 ) ) ) |
|
| 101 | 84 100 | syl | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( M + 1 ) ..^ N ) = ( ( M + 1 ) ... ( N - 1 ) ) ) |
| 102 | 101 | sumeq1d | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) = sum_ k e. ( ( M + 1 ) ... ( N - 1 ) ) ( A x. V ) ) |
| 103 | 102 | oveq1d | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) + ( E x. Z ) ) = ( sum_ k e. ( ( M + 1 ) ... ( N - 1 ) ) ( A x. V ) + ( E x. Z ) ) ) |
| 104 | 81 99 103 | 3eqtr4d | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ j e. ( M ..^ N ) ( C x. X ) = ( sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) + ( E x. Z ) ) ) |
| 105 | 63 73 104 | comraddd | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ j e. ( M ..^ N ) ( C x. X ) = ( ( E x. Z ) + sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) ) |
| 106 | 105 | oveq1d | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( sum_ j e. ( M ..^ N ) ( C x. X ) - sum_ j e. ( M ..^ N ) ( B x. X ) ) = ( ( ( E x. Z ) + sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) - sum_ j e. ( M ..^ N ) ( B x. X ) ) ) |
| 107 | fzofzp1 | |- ( j e. ( M ..^ N ) -> ( j + 1 ) e. ( M ... N ) ) |
|
| 108 | 2 | simpld | |- ( k = ( j + 1 ) -> A = C ) |
| 109 | 108 | eleq1d | |- ( k = ( j + 1 ) -> ( A e. CC <-> C e. CC ) ) |
| 110 | 109 | rspccva | |- ( ( A. k e. ( M ... N ) A e. CC /\ ( j + 1 ) e. ( M ... N ) ) -> C e. CC ) |
| 111 | 33 107 110 | syl2an | |- ( ( ph /\ j e. ( M ..^ N ) ) -> C e. CC ) |
| 112 | elfzofz | |- ( j e. ( M ..^ N ) -> j e. ( M ... N ) ) |
|
| 113 | 1 | simpld | |- ( k = j -> A = B ) |
| 114 | 113 | eleq1d | |- ( k = j -> ( A e. CC <-> B e. CC ) ) |
| 115 | 114 | rspccva | |- ( ( A. k e. ( M ... N ) A e. CC /\ j e. ( M ... N ) ) -> B e. CC ) |
| 116 | 33 112 115 | syl2an | |- ( ( ph /\ j e. ( M ..^ N ) ) -> B e. CC ) |
| 117 | 2 | simprd | |- ( k = ( j + 1 ) -> V = X ) |
| 118 | 117 | eleq1d | |- ( k = ( j + 1 ) -> ( V e. CC <-> X e. CC ) ) |
| 119 | 118 | rspccva | |- ( ( A. k e. ( M ... N ) V e. CC /\ ( j + 1 ) e. ( M ... N ) ) -> X e. CC ) |
| 120 | 37 107 119 | syl2an | |- ( ( ph /\ j e. ( M ..^ N ) ) -> X e. CC ) |
| 121 | 111 116 120 | subdird | |- ( ( ph /\ j e. ( M ..^ N ) ) -> ( ( C - B ) x. X ) = ( ( C x. X ) - ( B x. X ) ) ) |
| 122 | 121 | sumeq2dv | |- ( ph -> sum_ j e. ( M ..^ N ) ( ( C - B ) x. X ) = sum_ j e. ( M ..^ N ) ( ( C x. X ) - ( B x. X ) ) ) |
| 123 | fzofi | |- ( M ..^ N ) e. Fin |
|
| 124 | 123 | a1i | |- ( ph -> ( M ..^ N ) e. Fin ) |
| 125 | 111 120 | mulcld | |- ( ( ph /\ j e. ( M ..^ N ) ) -> ( C x. X ) e. CC ) |
| 126 | 116 120 | mulcld | |- ( ( ph /\ j e. ( M ..^ N ) ) -> ( B x. X ) e. CC ) |
| 127 | 124 125 126 | fsumsub | |- ( ph -> sum_ j e. ( M ..^ N ) ( ( C x. X ) - ( B x. X ) ) = ( sum_ j e. ( M ..^ N ) ( C x. X ) - sum_ j e. ( M ..^ N ) ( B x. X ) ) ) |
| 128 | 122 127 | eqtrd | |- ( ph -> sum_ j e. ( M ..^ N ) ( ( C - B ) x. X ) = ( sum_ j e. ( M ..^ N ) ( C x. X ) - sum_ j e. ( M ..^ N ) ( B x. X ) ) ) |
| 129 | 128 | adantr | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ j e. ( M ..^ N ) ( ( C - B ) x. X ) = ( sum_ j e. ( M ..^ N ) ( C x. X ) - sum_ j e. ( M ..^ N ) ( B x. X ) ) ) |
| 130 | 124 126 | fsumcl | |- ( ph -> sum_ j e. ( M ..^ N ) ( B x. X ) e. CC ) |
| 131 | 130 | adantr | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ j e. ( M ..^ N ) ( B x. X ) e. CC ) |
| 132 | 73 131 63 | subsub3d | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( E x. Z ) - ( sum_ j e. ( M ..^ N ) ( B x. X ) - sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) ) = ( ( ( E x. Z ) + sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) - sum_ j e. ( M ..^ N ) ( B x. X ) ) ) |
| 133 | 106 129 132 | 3eqtr4d | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ j e. ( M ..^ N ) ( ( C - B ) x. X ) = ( ( E x. Z ) - ( sum_ j e. ( M ..^ N ) ( B x. X ) - sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) ) ) |
| 134 | 133 | oveq2d | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( ( E x. Z ) - ( D x. Y ) ) - sum_ j e. ( M ..^ N ) ( ( C - B ) x. X ) ) = ( ( ( E x. Z ) - ( D x. Y ) ) - ( ( E x. Z ) - ( sum_ j e. ( M ..^ N ) ( B x. X ) - sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) ) ) ) |
| 135 | 39 | adantr | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( D x. Y ) e. CC ) |
| 136 | 131 63 | subcld | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( sum_ j e. ( M ..^ N ) ( B x. X ) - sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) e. CC ) |
| 137 | 73 135 136 | nnncan1d | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( ( E x. Z ) - ( D x. Y ) ) - ( ( E x. Z ) - ( sum_ j e. ( M ..^ N ) ( B x. X ) - sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) ) ) = ( ( sum_ j e. ( M ..^ N ) ( B x. X ) - sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) - ( D x. Y ) ) ) |
| 138 | 63 135 | addcomd | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) + ( D x. Y ) ) = ( ( D x. Y ) + sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) ) |
| 139 | eluzp1m1 | |- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` M ) ) |
|
| 140 | 51 139 | sylan | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` M ) ) |
| 141 | 86 | eleq2d | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( k e. ( M ..^ N ) <-> k e. ( M ... ( N - 1 ) ) ) ) |
| 142 | 141 | biimpar | |- ( ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( M ... ( N - 1 ) ) ) -> k e. ( M ..^ N ) ) |
| 143 | 142 61 | syldan | |- ( ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( M ... ( N - 1 ) ) ) -> ( A x. V ) e. CC ) |
| 144 | 140 143 22 | fsum1p | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ k e. ( M ... ( N - 1 ) ) ( A x. V ) = ( ( D x. Y ) + sum_ k e. ( ( M + 1 ) ... ( N - 1 ) ) ( A x. V ) ) ) |
| 145 | 86 | sumeq1d | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ k e. ( M ..^ N ) ( A x. V ) = sum_ k e. ( M ... ( N - 1 ) ) ( A x. V ) ) |
| 146 | 102 | oveq2d | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( D x. Y ) + sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) = ( ( D x. Y ) + sum_ k e. ( ( M + 1 ) ... ( N - 1 ) ) ( A x. V ) ) ) |
| 147 | 144 145 146 | 3eqtr4d | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ k e. ( M ..^ N ) ( A x. V ) = ( ( D x. Y ) + sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) ) |
| 148 | 138 147 | eqtr4d | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) + ( D x. Y ) ) = sum_ k e. ( M ..^ N ) ( A x. V ) ) |
| 149 | oveq12 | |- ( ( A = B /\ V = W ) -> ( A x. V ) = ( B x. W ) ) |
|
| 150 | 1 149 | syl | |- ( k = j -> ( A x. V ) = ( B x. W ) ) |
| 151 | 150 | cbvsumv | |- sum_ k e. ( M ..^ N ) ( A x. V ) = sum_ j e. ( M ..^ N ) ( B x. W ) |
| 152 | 148 151 | eqtrdi | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) + ( D x. Y ) ) = sum_ j e. ( M ..^ N ) ( B x. W ) ) |
| 153 | 152 | oveq2d | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( sum_ j e. ( M ..^ N ) ( B x. X ) - ( sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) + ( D x. Y ) ) ) = ( sum_ j e. ( M ..^ N ) ( B x. X ) - sum_ j e. ( M ..^ N ) ( B x. W ) ) ) |
| 154 | 131 63 135 | subsub4d | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( sum_ j e. ( M ..^ N ) ( B x. X ) - sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) - ( D x. Y ) ) = ( sum_ j e. ( M ..^ N ) ( B x. X ) - ( sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) + ( D x. Y ) ) ) ) |
| 155 | 1 | simprd | |- ( k = j -> V = W ) |
| 156 | 155 | eleq1d | |- ( k = j -> ( V e. CC <-> W e. CC ) ) |
| 157 | 156 | rspccva | |- ( ( A. k e. ( M ... N ) V e. CC /\ j e. ( M ... N ) ) -> W e. CC ) |
| 158 | 37 112 157 | syl2an | |- ( ( ph /\ j e. ( M ..^ N ) ) -> W e. CC ) |
| 159 | 116 120 158 | subdid | |- ( ( ph /\ j e. ( M ..^ N ) ) -> ( B x. ( X - W ) ) = ( ( B x. X ) - ( B x. W ) ) ) |
| 160 | 159 | sumeq2dv | |- ( ph -> sum_ j e. ( M ..^ N ) ( B x. ( X - W ) ) = sum_ j e. ( M ..^ N ) ( ( B x. X ) - ( B x. W ) ) ) |
| 161 | 116 158 | mulcld | |- ( ( ph /\ j e. ( M ..^ N ) ) -> ( B x. W ) e. CC ) |
| 162 | 124 126 161 | fsumsub | |- ( ph -> sum_ j e. ( M ..^ N ) ( ( B x. X ) - ( B x. W ) ) = ( sum_ j e. ( M ..^ N ) ( B x. X ) - sum_ j e. ( M ..^ N ) ( B x. W ) ) ) |
| 163 | 160 162 | eqtrd | |- ( ph -> sum_ j e. ( M ..^ N ) ( B x. ( X - W ) ) = ( sum_ j e. ( M ..^ N ) ( B x. X ) - sum_ j e. ( M ..^ N ) ( B x. W ) ) ) |
| 164 | 163 | adantr | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ j e. ( M ..^ N ) ( B x. ( X - W ) ) = ( sum_ j e. ( M ..^ N ) ( B x. X ) - sum_ j e. ( M ..^ N ) ( B x. W ) ) ) |
| 165 | 153 154 164 | 3eqtr4d | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( sum_ j e. ( M ..^ N ) ( B x. X ) - sum_ k e. ( ( M + 1 ) ..^ N ) ( A x. V ) ) - ( D x. Y ) ) = sum_ j e. ( M ..^ N ) ( B x. ( X - W ) ) ) |
| 166 | 134 137 165 | 3eqtrrd | |- ( ( ph /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ j e. ( M ..^ N ) ( B x. ( X - W ) ) = ( ( ( E x. Z ) - ( D x. Y ) ) - sum_ j e. ( M ..^ N ) ( ( C - B ) x. X ) ) ) |
| 167 | uzp1 | |- ( N e. ( ZZ>= ` M ) -> ( N = M \/ N e. ( ZZ>= ` ( M + 1 ) ) ) ) |
|
| 168 | 5 167 | syl | |- ( ph -> ( N = M \/ N e. ( ZZ>= ` ( M + 1 ) ) ) ) |
| 169 | 47 166 168 | mpjaodan | |- ( ph -> sum_ j e. ( M ..^ N ) ( B x. ( X - W ) ) = ( ( ( E x. Z ) - ( D x. Y ) ) - sum_ j e. ( M ..^ N ) ( ( C - B ) x. X ) ) ) |