This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fsumre , fsumim , and fsumcj . (Contributed by Mario Carneiro, 25-Jul-2014) (Revised by Mario Carneiro, 27-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumre.1 | |- ( ph -> A e. Fin ) |
|
| fsumre.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
| fsumrelem.3 | |- F : CC --> CC |
||
| fsumrelem.4 | |- ( ( x e. CC /\ y e. CC ) -> ( F ` ( x + y ) ) = ( ( F ` x ) + ( F ` y ) ) ) |
||
| Assertion | fsumrelem | |- ( ph -> ( F ` sum_ k e. A B ) = sum_ k e. A ( F ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumre.1 | |- ( ph -> A e. Fin ) |
|
| 2 | fsumre.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
| 3 | fsumrelem.3 | |- F : CC --> CC |
|
| 4 | fsumrelem.4 | |- ( ( x e. CC /\ y e. CC ) -> ( F ` ( x + y ) ) = ( ( F ` x ) + ( F ` y ) ) ) |
|
| 5 | 0cn | |- 0 e. CC |
|
| 6 | 3 | ffvelcdmi | |- ( 0 e. CC -> ( F ` 0 ) e. CC ) |
| 7 | 5 6 | ax-mp | |- ( F ` 0 ) e. CC |
| 8 | 7 | addridi | |- ( ( F ` 0 ) + 0 ) = ( F ` 0 ) |
| 9 | fvoveq1 | |- ( x = 0 -> ( F ` ( x + y ) ) = ( F ` ( 0 + y ) ) ) |
|
| 10 | fveq2 | |- ( x = 0 -> ( F ` x ) = ( F ` 0 ) ) |
|
| 11 | 10 | oveq1d | |- ( x = 0 -> ( ( F ` x ) + ( F ` y ) ) = ( ( F ` 0 ) + ( F ` y ) ) ) |
| 12 | 9 11 | eqeq12d | |- ( x = 0 -> ( ( F ` ( x + y ) ) = ( ( F ` x ) + ( F ` y ) ) <-> ( F ` ( 0 + y ) ) = ( ( F ` 0 ) + ( F ` y ) ) ) ) |
| 13 | oveq2 | |- ( y = 0 -> ( 0 + y ) = ( 0 + 0 ) ) |
|
| 14 | 00id | |- ( 0 + 0 ) = 0 |
|
| 15 | 13 14 | eqtrdi | |- ( y = 0 -> ( 0 + y ) = 0 ) |
| 16 | 15 | fveq2d | |- ( y = 0 -> ( F ` ( 0 + y ) ) = ( F ` 0 ) ) |
| 17 | fveq2 | |- ( y = 0 -> ( F ` y ) = ( F ` 0 ) ) |
|
| 18 | 17 | oveq2d | |- ( y = 0 -> ( ( F ` 0 ) + ( F ` y ) ) = ( ( F ` 0 ) + ( F ` 0 ) ) ) |
| 19 | 16 18 | eqeq12d | |- ( y = 0 -> ( ( F ` ( 0 + y ) ) = ( ( F ` 0 ) + ( F ` y ) ) <-> ( F ` 0 ) = ( ( F ` 0 ) + ( F ` 0 ) ) ) ) |
| 20 | 12 19 4 | vtocl2ga | |- ( ( 0 e. CC /\ 0 e. CC ) -> ( F ` 0 ) = ( ( F ` 0 ) + ( F ` 0 ) ) ) |
| 21 | 5 5 20 | mp2an | |- ( F ` 0 ) = ( ( F ` 0 ) + ( F ` 0 ) ) |
| 22 | 8 21 | eqtr2i | |- ( ( F ` 0 ) + ( F ` 0 ) ) = ( ( F ` 0 ) + 0 ) |
| 23 | 7 7 5 | addcani | |- ( ( ( F ` 0 ) + ( F ` 0 ) ) = ( ( F ` 0 ) + 0 ) <-> ( F ` 0 ) = 0 ) |
| 24 | 22 23 | mpbi | |- ( F ` 0 ) = 0 |
| 25 | sumeq1 | |- ( A = (/) -> sum_ k e. A B = sum_ k e. (/) B ) |
|
| 26 | sum0 | |- sum_ k e. (/) B = 0 |
|
| 27 | 25 26 | eqtrdi | |- ( A = (/) -> sum_ k e. A B = 0 ) |
| 28 | 27 | fveq2d | |- ( A = (/) -> ( F ` sum_ k e. A B ) = ( F ` 0 ) ) |
| 29 | sumeq1 | |- ( A = (/) -> sum_ k e. A ( F ` B ) = sum_ k e. (/) ( F ` B ) ) |
|
| 30 | sum0 | |- sum_ k e. (/) ( F ` B ) = 0 |
|
| 31 | 29 30 | eqtrdi | |- ( A = (/) -> sum_ k e. A ( F ` B ) = 0 ) |
| 32 | 24 28 31 | 3eqtr4a | |- ( A = (/) -> ( F ` sum_ k e. A B ) = sum_ k e. A ( F ` B ) ) |
| 33 | 32 | a1i | |- ( ph -> ( A = (/) -> ( F ` sum_ k e. A B ) = sum_ k e. A ( F ` B ) ) ) |
| 34 | addcl | |- ( ( x e. CC /\ y e. CC ) -> ( x + y ) e. CC ) |
|
| 35 | 34 | adantl | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ ( x e. CC /\ y e. CC ) ) -> ( x + y ) e. CC ) |
| 36 | 2 | fmpttd | |- ( ph -> ( k e. A |-> B ) : A --> CC ) |
| 37 | 36 | adantr | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( k e. A |-> B ) : A --> CC ) |
| 38 | simprr | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
|
| 39 | f1of | |- ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> f : ( 1 ... ( # ` A ) ) --> A ) |
|
| 40 | 38 39 | syl | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> f : ( 1 ... ( # ` A ) ) --> A ) |
| 41 | fco | |- ( ( ( k e. A |-> B ) : A --> CC /\ f : ( 1 ... ( # ` A ) ) --> A ) -> ( ( k e. A |-> B ) o. f ) : ( 1 ... ( # ` A ) ) --> CC ) |
|
| 42 | 37 40 41 | syl2anc | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( ( k e. A |-> B ) o. f ) : ( 1 ... ( # ` A ) ) --> CC ) |
| 43 | 42 | ffvelcdmda | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ x e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` x ) e. CC ) |
| 44 | simprl | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( # ` A ) e. NN ) |
|
| 45 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 46 | 44 45 | eleqtrdi | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( # ` A ) e. ( ZZ>= ` 1 ) ) |
| 47 | 4 | adantl | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ ( x e. CC /\ y e. CC ) ) -> ( F ` ( x + y ) ) = ( ( F ` x ) + ( F ` y ) ) ) |
| 48 | 40 | ffvelcdmda | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ x e. ( 1 ... ( # ` A ) ) ) -> ( f ` x ) e. A ) |
| 49 | simpr | |- ( ( ph /\ k e. A ) -> k e. A ) |
|
| 50 | eqid | |- ( k e. A |-> B ) = ( k e. A |-> B ) |
|
| 51 | 50 | fvmpt2 | |- ( ( k e. A /\ B e. CC ) -> ( ( k e. A |-> B ) ` k ) = B ) |
| 52 | 49 2 51 | syl2anc | |- ( ( ph /\ k e. A ) -> ( ( k e. A |-> B ) ` k ) = B ) |
| 53 | 52 | fveq2d | |- ( ( ph /\ k e. A ) -> ( F ` ( ( k e. A |-> B ) ` k ) ) = ( F ` B ) ) |
| 54 | fvex | |- ( F ` B ) e. _V |
|
| 55 | eqid | |- ( k e. A |-> ( F ` B ) ) = ( k e. A |-> ( F ` B ) ) |
|
| 56 | 55 | fvmpt2 | |- ( ( k e. A /\ ( F ` B ) e. _V ) -> ( ( k e. A |-> ( F ` B ) ) ` k ) = ( F ` B ) ) |
| 57 | 49 54 56 | sylancl | |- ( ( ph /\ k e. A ) -> ( ( k e. A |-> ( F ` B ) ) ` k ) = ( F ` B ) ) |
| 58 | 53 57 | eqtr4d | |- ( ( ph /\ k e. A ) -> ( F ` ( ( k e. A |-> B ) ` k ) ) = ( ( k e. A |-> ( F ` B ) ) ` k ) ) |
| 59 | 58 | ralrimiva | |- ( ph -> A. k e. A ( F ` ( ( k e. A |-> B ) ` k ) ) = ( ( k e. A |-> ( F ` B ) ) ` k ) ) |
| 60 | 59 | ad2antrr | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ x e. ( 1 ... ( # ` A ) ) ) -> A. k e. A ( F ` ( ( k e. A |-> B ) ` k ) ) = ( ( k e. A |-> ( F ` B ) ) ` k ) ) |
| 61 | nfcv | |- F/_ k F |
|
| 62 | nffvmpt1 | |- F/_ k ( ( k e. A |-> B ) ` ( f ` x ) ) |
|
| 63 | 61 62 | nffv | |- F/_ k ( F ` ( ( k e. A |-> B ) ` ( f ` x ) ) ) |
| 64 | nffvmpt1 | |- F/_ k ( ( k e. A |-> ( F ` B ) ) ` ( f ` x ) ) |
|
| 65 | 63 64 | nfeq | |- F/ k ( F ` ( ( k e. A |-> B ) ` ( f ` x ) ) ) = ( ( k e. A |-> ( F ` B ) ) ` ( f ` x ) ) |
| 66 | 2fveq3 | |- ( k = ( f ` x ) -> ( F ` ( ( k e. A |-> B ) ` k ) ) = ( F ` ( ( k e. A |-> B ) ` ( f ` x ) ) ) ) |
|
| 67 | fveq2 | |- ( k = ( f ` x ) -> ( ( k e. A |-> ( F ` B ) ) ` k ) = ( ( k e. A |-> ( F ` B ) ) ` ( f ` x ) ) ) |
|
| 68 | 66 67 | eqeq12d | |- ( k = ( f ` x ) -> ( ( F ` ( ( k e. A |-> B ) ` k ) ) = ( ( k e. A |-> ( F ` B ) ) ` k ) <-> ( F ` ( ( k e. A |-> B ) ` ( f ` x ) ) ) = ( ( k e. A |-> ( F ` B ) ) ` ( f ` x ) ) ) ) |
| 69 | 65 68 | rspc | |- ( ( f ` x ) e. A -> ( A. k e. A ( F ` ( ( k e. A |-> B ) ` k ) ) = ( ( k e. A |-> ( F ` B ) ) ` k ) -> ( F ` ( ( k e. A |-> B ) ` ( f ` x ) ) ) = ( ( k e. A |-> ( F ` B ) ) ` ( f ` x ) ) ) ) |
| 70 | 48 60 69 | sylc | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ x e. ( 1 ... ( # ` A ) ) ) -> ( F ` ( ( k e. A |-> B ) ` ( f ` x ) ) ) = ( ( k e. A |-> ( F ` B ) ) ` ( f ` x ) ) ) |
| 71 | fvco3 | |- ( ( f : ( 1 ... ( # ` A ) ) --> A /\ x e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` x ) = ( ( k e. A |-> B ) ` ( f ` x ) ) ) |
|
| 72 | 40 71 | sylan | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ x e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` x ) = ( ( k e. A |-> B ) ` ( f ` x ) ) ) |
| 73 | 72 | fveq2d | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ x e. ( 1 ... ( # ` A ) ) ) -> ( F ` ( ( ( k e. A |-> B ) o. f ) ` x ) ) = ( F ` ( ( k e. A |-> B ) ` ( f ` x ) ) ) ) |
| 74 | fvco3 | |- ( ( f : ( 1 ... ( # ` A ) ) --> A /\ x e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> ( F ` B ) ) o. f ) ` x ) = ( ( k e. A |-> ( F ` B ) ) ` ( f ` x ) ) ) |
|
| 75 | 40 74 | sylan | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ x e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> ( F ` B ) ) o. f ) ` x ) = ( ( k e. A |-> ( F ` B ) ) ` ( f ` x ) ) ) |
| 76 | 70 73 75 | 3eqtr4d | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ x e. ( 1 ... ( # ` A ) ) ) -> ( F ` ( ( ( k e. A |-> B ) o. f ) ` x ) ) = ( ( ( k e. A |-> ( F ` B ) ) o. f ) ` x ) ) |
| 77 | 35 43 46 47 76 | seqhomo | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( F ` ( seq 1 ( + , ( ( k e. A |-> B ) o. f ) ) ` ( # ` A ) ) ) = ( seq 1 ( + , ( ( k e. A |-> ( F ` B ) ) o. f ) ) ` ( # ` A ) ) ) |
| 78 | fveq2 | |- ( m = ( f ` x ) -> ( ( k e. A |-> B ) ` m ) = ( ( k e. A |-> B ) ` ( f ` x ) ) ) |
|
| 79 | 37 | ffvelcdmda | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ m e. A ) -> ( ( k e. A |-> B ) ` m ) e. CC ) |
| 80 | 78 44 38 79 72 | fsum | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> sum_ m e. A ( ( k e. A |-> B ) ` m ) = ( seq 1 ( + , ( ( k e. A |-> B ) o. f ) ) ` ( # ` A ) ) ) |
| 81 | 80 | fveq2d | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( F ` sum_ m e. A ( ( k e. A |-> B ) ` m ) ) = ( F ` ( seq 1 ( + , ( ( k e. A |-> B ) o. f ) ) ` ( # ` A ) ) ) ) |
| 82 | fveq2 | |- ( m = ( f ` x ) -> ( ( k e. A |-> ( F ` B ) ) ` m ) = ( ( k e. A |-> ( F ` B ) ) ` ( f ` x ) ) ) |
|
| 83 | 3 | ffvelcdmi | |- ( B e. CC -> ( F ` B ) e. CC ) |
| 84 | 2 83 | syl | |- ( ( ph /\ k e. A ) -> ( F ` B ) e. CC ) |
| 85 | 84 | fmpttd | |- ( ph -> ( k e. A |-> ( F ` B ) ) : A --> CC ) |
| 86 | 85 | adantr | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( k e. A |-> ( F ` B ) ) : A --> CC ) |
| 87 | 86 | ffvelcdmda | |- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ m e. A ) -> ( ( k e. A |-> ( F ` B ) ) ` m ) e. CC ) |
| 88 | 82 44 38 87 75 | fsum | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> sum_ m e. A ( ( k e. A |-> ( F ` B ) ) ` m ) = ( seq 1 ( + , ( ( k e. A |-> ( F ` B ) ) o. f ) ) ` ( # ` A ) ) ) |
| 89 | 77 81 88 | 3eqtr4d | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( F ` sum_ m e. A ( ( k e. A |-> B ) ` m ) ) = sum_ m e. A ( ( k e. A |-> ( F ` B ) ) ` m ) ) |
| 90 | sumfc | |- sum_ m e. A ( ( k e. A |-> B ) ` m ) = sum_ k e. A B |
|
| 91 | 90 | fveq2i | |- ( F ` sum_ m e. A ( ( k e. A |-> B ) ` m ) ) = ( F ` sum_ k e. A B ) |
| 92 | sumfc | |- sum_ m e. A ( ( k e. A |-> ( F ` B ) ) ` m ) = sum_ k e. A ( F ` B ) |
|
| 93 | 89 91 92 | 3eqtr3g | |- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( F ` sum_ k e. A B ) = sum_ k e. A ( F ` B ) ) |
| 94 | 93 | expr | |- ( ( ph /\ ( # ` A ) e. NN ) -> ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> ( F ` sum_ k e. A B ) = sum_ k e. A ( F ` B ) ) ) |
| 95 | 94 | exlimdv | |- ( ( ph /\ ( # ` A ) e. NN ) -> ( E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> ( F ` sum_ k e. A B ) = sum_ k e. A ( F ` B ) ) ) |
| 96 | 95 | expimpd | |- ( ph -> ( ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( F ` sum_ k e. A B ) = sum_ k e. A ( F ` B ) ) ) |
| 97 | fz1f1o | |- ( A e. Fin -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) |
|
| 98 | 1 97 | syl | |- ( ph -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) |
| 99 | 33 96 98 | mpjaod | |- ( ph -> ( F ` sum_ k e. A B ) = sum_ k e. A ( F ` B ) ) |