This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 29-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzoss1 | |- ( K e. ( ZZ>= ` M ) -> ( K ..^ N ) C_ ( M ..^ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 | |- ( ( K ..^ N ) = (/) -> ( ( K ..^ N ) C_ ( M ..^ N ) <-> (/) C_ ( M ..^ N ) ) ) |
|
| 2 | fzon0 | |- ( ( K ..^ N ) =/= (/) <-> K e. ( K ..^ N ) ) |
|
| 3 | elfzoel2 | |- ( K e. ( K ..^ N ) -> N e. ZZ ) |
|
| 4 | 2 3 | sylbi | |- ( ( K ..^ N ) =/= (/) -> N e. ZZ ) |
| 5 | fzss1 | |- ( K e. ( ZZ>= ` M ) -> ( K ... ( N - 1 ) ) C_ ( M ... ( N - 1 ) ) ) |
|
| 6 | 5 | adantr | |- ( ( K e. ( ZZ>= ` M ) /\ N e. ZZ ) -> ( K ... ( N - 1 ) ) C_ ( M ... ( N - 1 ) ) ) |
| 7 | fzoval | |- ( N e. ZZ -> ( K ..^ N ) = ( K ... ( N - 1 ) ) ) |
|
| 8 | 7 | adantl | |- ( ( K e. ( ZZ>= ` M ) /\ N e. ZZ ) -> ( K ..^ N ) = ( K ... ( N - 1 ) ) ) |
| 9 | fzoval | |- ( N e. ZZ -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
|
| 10 | 9 | adantl | |- ( ( K e. ( ZZ>= ` M ) /\ N e. ZZ ) -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
| 11 | 6 8 10 | 3sstr4d | |- ( ( K e. ( ZZ>= ` M ) /\ N e. ZZ ) -> ( K ..^ N ) C_ ( M ..^ N ) ) |
| 12 | 4 11 | sylan2 | |- ( ( K e. ( ZZ>= ` M ) /\ ( K ..^ N ) =/= (/) ) -> ( K ..^ N ) C_ ( M ..^ N ) ) |
| 13 | 0ss | |- (/) C_ ( M ..^ N ) |
|
| 14 | 13 | a1i | |- ( K e. ( ZZ>= ` M ) -> (/) C_ ( M ..^ N ) ) |
| 15 | 1 12 14 | pm2.61ne | |- ( K e. ( ZZ>= ` M ) -> ( K ..^ N ) C_ ( M ..^ N ) ) |