This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a Cartesian product. (Contributed by NM, 23-Feb-2004) (Proof shortened by JJ, 13-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elxp2 | |- ( A e. ( B X. C ) <-> E. x e. B E. y e. C A = <. x , y >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom | |- ( ( A = <. x , y >. /\ ( x e. B /\ y e. C ) ) <-> ( ( x e. B /\ y e. C ) /\ A = <. x , y >. ) ) |
|
| 2 | 1 | 2exbii | |- ( E. x E. y ( A = <. x , y >. /\ ( x e. B /\ y e. C ) ) <-> E. x E. y ( ( x e. B /\ y e. C ) /\ A = <. x , y >. ) ) |
| 3 | elxp | |- ( A e. ( B X. C ) <-> E. x E. y ( A = <. x , y >. /\ ( x e. B /\ y e. C ) ) ) |
|
| 4 | r2ex | |- ( E. x e. B E. y e. C A = <. x , y >. <-> E. x E. y ( ( x e. B /\ y e. C ) /\ A = <. x , y >. ) ) |
|
| 5 | 2 3 4 | 3bitr4i | |- ( A e. ( B X. C ) <-> E. x e. B E. y e. C A = <. x , y >. ) |