This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the quotient map in a free group. (Contributed by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frgp0.m | |- G = ( freeGrp ` I ) |
|
| frgp0.r | |- .~ = ( ~FG ` I ) |
||
| frgpeccl.w | |- W = ( _I ` Word ( I X. 2o ) ) |
||
| frgpeccl.b | |- B = ( Base ` G ) |
||
| Assertion | frgpeccl | |- ( X e. W -> [ X ] .~ e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgp0.m | |- G = ( freeGrp ` I ) |
|
| 2 | frgp0.r | |- .~ = ( ~FG ` I ) |
|
| 3 | frgpeccl.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| 4 | frgpeccl.b | |- B = ( Base ` G ) |
|
| 5 | 2 | fvexi | |- .~ e. _V |
| 6 | 5 | ecelqsi | |- ( X e. W -> [ X ] .~ e. ( W /. .~ ) ) |
| 7 | 3 | efgrcl | |- ( X e. W -> ( I e. _V /\ W = Word ( I X. 2o ) ) ) |
| 8 | 7 | simpld | |- ( X e. W -> I e. _V ) |
| 9 | eqid | |- ( freeMnd ` ( I X. 2o ) ) = ( freeMnd ` ( I X. 2o ) ) |
|
| 10 | 1 9 2 | frgpval | |- ( I e. _V -> G = ( ( freeMnd ` ( I X. 2o ) ) /s .~ ) ) |
| 11 | 8 10 | syl | |- ( X e. W -> G = ( ( freeMnd ` ( I X. 2o ) ) /s .~ ) ) |
| 12 | 7 | simprd | |- ( X e. W -> W = Word ( I X. 2o ) ) |
| 13 | 2on | |- 2o e. On |
|
| 14 | xpexg | |- ( ( I e. _V /\ 2o e. On ) -> ( I X. 2o ) e. _V ) |
|
| 15 | 8 13 14 | sylancl | |- ( X e. W -> ( I X. 2o ) e. _V ) |
| 16 | eqid | |- ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = ( Base ` ( freeMnd ` ( I X. 2o ) ) ) |
|
| 17 | 9 16 | frmdbas | |- ( ( I X. 2o ) e. _V -> ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = Word ( I X. 2o ) ) |
| 18 | 15 17 | syl | |- ( X e. W -> ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = Word ( I X. 2o ) ) |
| 19 | 12 18 | eqtr4d | |- ( X e. W -> W = ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
| 20 | 5 | a1i | |- ( X e. W -> .~ e. _V ) |
| 21 | fvexd | |- ( X e. W -> ( freeMnd ` ( I X. 2o ) ) e. _V ) |
|
| 22 | 11 19 20 21 | qusbas | |- ( X e. W -> ( W /. .~ ) = ( Base ` G ) ) |
| 23 | 22 4 | eqtr4di | |- ( X e. W -> ( W /. .~ ) = B ) |
| 24 | 6 23 | eleqtrd | |- ( X e. W -> [ X ] .~ e. B ) |