This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by Mario Carneiro, 28-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frgpup.b | |- B = ( Base ` H ) |
|
| frgpup.n | |- N = ( invg ` H ) |
||
| frgpup.t | |- T = ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) ) |
||
| frgpup.h | |- ( ph -> H e. Grp ) |
||
| frgpup.i | |- ( ph -> I e. V ) |
||
| frgpup.a | |- ( ph -> F : I --> B ) |
||
| frgpup.w | |- W = ( _I ` Word ( I X. 2o ) ) |
||
| frgpup.r | |- .~ = ( ~FG ` I ) |
||
| frgpup.g | |- G = ( freeGrp ` I ) |
||
| frgpup.x | |- X = ( Base ` G ) |
||
| frgpup.e | |- E = ran ( g e. W |-> <. [ g ] .~ , ( H gsum ( T o. g ) ) >. ) |
||
| Assertion | frgpup1 | |- ( ph -> E e. ( G GrpHom H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpup.b | |- B = ( Base ` H ) |
|
| 2 | frgpup.n | |- N = ( invg ` H ) |
|
| 3 | frgpup.t | |- T = ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) ) |
|
| 4 | frgpup.h | |- ( ph -> H e. Grp ) |
|
| 5 | frgpup.i | |- ( ph -> I e. V ) |
|
| 6 | frgpup.a | |- ( ph -> F : I --> B ) |
|
| 7 | frgpup.w | |- W = ( _I ` Word ( I X. 2o ) ) |
|
| 8 | frgpup.r | |- .~ = ( ~FG ` I ) |
|
| 9 | frgpup.g | |- G = ( freeGrp ` I ) |
|
| 10 | frgpup.x | |- X = ( Base ` G ) |
|
| 11 | frgpup.e | |- E = ran ( g e. W |-> <. [ g ] .~ , ( H gsum ( T o. g ) ) >. ) |
|
| 12 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 13 | eqid | |- ( +g ` H ) = ( +g ` H ) |
|
| 14 | 9 | frgpgrp | |- ( I e. V -> G e. Grp ) |
| 15 | 5 14 | syl | |- ( ph -> G e. Grp ) |
| 16 | 1 2 3 4 5 6 7 8 9 10 11 | frgpupf | |- ( ph -> E : X --> B ) |
| 17 | eqid | |- ( freeMnd ` ( I X. 2o ) ) = ( freeMnd ` ( I X. 2o ) ) |
|
| 18 | 9 17 8 | frgpval | |- ( I e. V -> G = ( ( freeMnd ` ( I X. 2o ) ) /s .~ ) ) |
| 19 | 5 18 | syl | |- ( ph -> G = ( ( freeMnd ` ( I X. 2o ) ) /s .~ ) ) |
| 20 | 2on | |- 2o e. On |
|
| 21 | xpexg | |- ( ( I e. V /\ 2o e. On ) -> ( I X. 2o ) e. _V ) |
|
| 22 | 5 20 21 | sylancl | |- ( ph -> ( I X. 2o ) e. _V ) |
| 23 | wrdexg | |- ( ( I X. 2o ) e. _V -> Word ( I X. 2o ) e. _V ) |
|
| 24 | fvi | |- ( Word ( I X. 2o ) e. _V -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) |
|
| 25 | 22 23 24 | 3syl | |- ( ph -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) |
| 26 | 7 25 | eqtrid | |- ( ph -> W = Word ( I X. 2o ) ) |
| 27 | eqid | |- ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = ( Base ` ( freeMnd ` ( I X. 2o ) ) ) |
|
| 28 | 17 27 | frmdbas | |- ( ( I X. 2o ) e. _V -> ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = Word ( I X. 2o ) ) |
| 29 | 22 28 | syl | |- ( ph -> ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = Word ( I X. 2o ) ) |
| 30 | 26 29 | eqtr4d | |- ( ph -> W = ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
| 31 | 8 | fvexi | |- .~ e. _V |
| 32 | 31 | a1i | |- ( ph -> .~ e. _V ) |
| 33 | fvexd | |- ( ph -> ( freeMnd ` ( I X. 2o ) ) e. _V ) |
|
| 34 | 19 30 32 33 | qusbas | |- ( ph -> ( W /. .~ ) = ( Base ` G ) ) |
| 35 | 10 34 | eqtr4id | |- ( ph -> X = ( W /. .~ ) ) |
| 36 | eqimss | |- ( X = ( W /. .~ ) -> X C_ ( W /. .~ ) ) |
|
| 37 | 35 36 | syl | |- ( ph -> X C_ ( W /. .~ ) ) |
| 38 | 37 | adantr | |- ( ( ph /\ a e. X ) -> X C_ ( W /. .~ ) ) |
| 39 | 38 | sselda | |- ( ( ( ph /\ a e. X ) /\ c e. X ) -> c e. ( W /. .~ ) ) |
| 40 | eqid | |- ( W /. .~ ) = ( W /. .~ ) |
|
| 41 | oveq2 | |- ( [ u ] .~ = c -> ( a ( +g ` G ) [ u ] .~ ) = ( a ( +g ` G ) c ) ) |
|
| 42 | 41 | fveq2d | |- ( [ u ] .~ = c -> ( E ` ( a ( +g ` G ) [ u ] .~ ) ) = ( E ` ( a ( +g ` G ) c ) ) ) |
| 43 | fveq2 | |- ( [ u ] .~ = c -> ( E ` [ u ] .~ ) = ( E ` c ) ) |
|
| 44 | 43 | oveq2d | |- ( [ u ] .~ = c -> ( ( E ` a ) ( +g ` H ) ( E ` [ u ] .~ ) ) = ( ( E ` a ) ( +g ` H ) ( E ` c ) ) ) |
| 45 | 42 44 | eqeq12d | |- ( [ u ] .~ = c -> ( ( E ` ( a ( +g ` G ) [ u ] .~ ) ) = ( ( E ` a ) ( +g ` H ) ( E ` [ u ] .~ ) ) <-> ( E ` ( a ( +g ` G ) c ) ) = ( ( E ` a ) ( +g ` H ) ( E ` c ) ) ) ) |
| 46 | 37 | sselda | |- ( ( ph /\ a e. X ) -> a e. ( W /. .~ ) ) |
| 47 | 46 | adantlr | |- ( ( ( ph /\ u e. W ) /\ a e. X ) -> a e. ( W /. .~ ) ) |
| 48 | fvoveq1 | |- ( [ t ] .~ = a -> ( E ` ( [ t ] .~ ( +g ` G ) [ u ] .~ ) ) = ( E ` ( a ( +g ` G ) [ u ] .~ ) ) ) |
|
| 49 | fveq2 | |- ( [ t ] .~ = a -> ( E ` [ t ] .~ ) = ( E ` a ) ) |
|
| 50 | 49 | oveq1d | |- ( [ t ] .~ = a -> ( ( E ` [ t ] .~ ) ( +g ` H ) ( E ` [ u ] .~ ) ) = ( ( E ` a ) ( +g ` H ) ( E ` [ u ] .~ ) ) ) |
| 51 | 48 50 | eqeq12d | |- ( [ t ] .~ = a -> ( ( E ` ( [ t ] .~ ( +g ` G ) [ u ] .~ ) ) = ( ( E ` [ t ] .~ ) ( +g ` H ) ( E ` [ u ] .~ ) ) <-> ( E ` ( a ( +g ` G ) [ u ] .~ ) ) = ( ( E ` a ) ( +g ` H ) ( E ` [ u ] .~ ) ) ) ) |
| 52 | fviss | |- ( _I ` Word ( I X. 2o ) ) C_ Word ( I X. 2o ) |
|
| 53 | 7 52 | eqsstri | |- W C_ Word ( I X. 2o ) |
| 54 | 53 | sseli | |- ( t e. W -> t e. Word ( I X. 2o ) ) |
| 55 | 53 | sseli | |- ( u e. W -> u e. Word ( I X. 2o ) ) |
| 56 | ccatcl | |- ( ( t e. Word ( I X. 2o ) /\ u e. Word ( I X. 2o ) ) -> ( t ++ u ) e. Word ( I X. 2o ) ) |
|
| 57 | 54 55 56 | syl2an | |- ( ( t e. W /\ u e. W ) -> ( t ++ u ) e. Word ( I X. 2o ) ) |
| 58 | 7 | efgrcl | |- ( t e. W -> ( I e. _V /\ W = Word ( I X. 2o ) ) ) |
| 59 | 58 | adantr | |- ( ( t e. W /\ u e. W ) -> ( I e. _V /\ W = Word ( I X. 2o ) ) ) |
| 60 | 59 | simprd | |- ( ( t e. W /\ u e. W ) -> W = Word ( I X. 2o ) ) |
| 61 | 57 60 | eleqtrrd | |- ( ( t e. W /\ u e. W ) -> ( t ++ u ) e. W ) |
| 62 | 1 2 3 4 5 6 7 8 9 10 11 | frgpupval | |- ( ( ph /\ ( t ++ u ) e. W ) -> ( E ` [ ( t ++ u ) ] .~ ) = ( H gsum ( T o. ( t ++ u ) ) ) ) |
| 63 | 61 62 | sylan2 | |- ( ( ph /\ ( t e. W /\ u e. W ) ) -> ( E ` [ ( t ++ u ) ] .~ ) = ( H gsum ( T o. ( t ++ u ) ) ) ) |
| 64 | 54 | ad2antrl | |- ( ( ph /\ ( t e. W /\ u e. W ) ) -> t e. Word ( I X. 2o ) ) |
| 65 | 55 | ad2antll | |- ( ( ph /\ ( t e. W /\ u e. W ) ) -> u e. Word ( I X. 2o ) ) |
| 66 | 1 2 3 4 5 6 | frgpuptf | |- ( ph -> T : ( I X. 2o ) --> B ) |
| 67 | 66 | adantr | |- ( ( ph /\ ( t e. W /\ u e. W ) ) -> T : ( I X. 2o ) --> B ) |
| 68 | ccatco | |- ( ( t e. Word ( I X. 2o ) /\ u e. Word ( I X. 2o ) /\ T : ( I X. 2o ) --> B ) -> ( T o. ( t ++ u ) ) = ( ( T o. t ) ++ ( T o. u ) ) ) |
|
| 69 | 64 65 67 68 | syl3anc | |- ( ( ph /\ ( t e. W /\ u e. W ) ) -> ( T o. ( t ++ u ) ) = ( ( T o. t ) ++ ( T o. u ) ) ) |
| 70 | 69 | oveq2d | |- ( ( ph /\ ( t e. W /\ u e. W ) ) -> ( H gsum ( T o. ( t ++ u ) ) ) = ( H gsum ( ( T o. t ) ++ ( T o. u ) ) ) ) |
| 71 | 4 | grpmndd | |- ( ph -> H e. Mnd ) |
| 72 | 71 | adantr | |- ( ( ph /\ ( t e. W /\ u e. W ) ) -> H e. Mnd ) |
| 73 | wrdco | |- ( ( t e. Word ( I X. 2o ) /\ T : ( I X. 2o ) --> B ) -> ( T o. t ) e. Word B ) |
|
| 74 | 54 66 73 | syl2anr | |- ( ( ph /\ t e. W ) -> ( T o. t ) e. Word B ) |
| 75 | 74 | adantrr | |- ( ( ph /\ ( t e. W /\ u e. W ) ) -> ( T o. t ) e. Word B ) |
| 76 | wrdco | |- ( ( u e. Word ( I X. 2o ) /\ T : ( I X. 2o ) --> B ) -> ( T o. u ) e. Word B ) |
|
| 77 | 65 67 76 | syl2anc | |- ( ( ph /\ ( t e. W /\ u e. W ) ) -> ( T o. u ) e. Word B ) |
| 78 | 1 13 | gsumccat | |- ( ( H e. Mnd /\ ( T o. t ) e. Word B /\ ( T o. u ) e. Word B ) -> ( H gsum ( ( T o. t ) ++ ( T o. u ) ) ) = ( ( H gsum ( T o. t ) ) ( +g ` H ) ( H gsum ( T o. u ) ) ) ) |
| 79 | 72 75 77 78 | syl3anc | |- ( ( ph /\ ( t e. W /\ u e. W ) ) -> ( H gsum ( ( T o. t ) ++ ( T o. u ) ) ) = ( ( H gsum ( T o. t ) ) ( +g ` H ) ( H gsum ( T o. u ) ) ) ) |
| 80 | 63 70 79 | 3eqtrd | |- ( ( ph /\ ( t e. W /\ u e. W ) ) -> ( E ` [ ( t ++ u ) ] .~ ) = ( ( H gsum ( T o. t ) ) ( +g ` H ) ( H gsum ( T o. u ) ) ) ) |
| 81 | 7 9 8 12 | frgpadd | |- ( ( t e. W /\ u e. W ) -> ( [ t ] .~ ( +g ` G ) [ u ] .~ ) = [ ( t ++ u ) ] .~ ) |
| 82 | 81 | adantl | |- ( ( ph /\ ( t e. W /\ u e. W ) ) -> ( [ t ] .~ ( +g ` G ) [ u ] .~ ) = [ ( t ++ u ) ] .~ ) |
| 83 | 82 | fveq2d | |- ( ( ph /\ ( t e. W /\ u e. W ) ) -> ( E ` ( [ t ] .~ ( +g ` G ) [ u ] .~ ) ) = ( E ` [ ( t ++ u ) ] .~ ) ) |
| 84 | 1 2 3 4 5 6 7 8 9 10 11 | frgpupval | |- ( ( ph /\ t e. W ) -> ( E ` [ t ] .~ ) = ( H gsum ( T o. t ) ) ) |
| 85 | 84 | adantrr | |- ( ( ph /\ ( t e. W /\ u e. W ) ) -> ( E ` [ t ] .~ ) = ( H gsum ( T o. t ) ) ) |
| 86 | 1 2 3 4 5 6 7 8 9 10 11 | frgpupval | |- ( ( ph /\ u e. W ) -> ( E ` [ u ] .~ ) = ( H gsum ( T o. u ) ) ) |
| 87 | 86 | adantrl | |- ( ( ph /\ ( t e. W /\ u e. W ) ) -> ( E ` [ u ] .~ ) = ( H gsum ( T o. u ) ) ) |
| 88 | 85 87 | oveq12d | |- ( ( ph /\ ( t e. W /\ u e. W ) ) -> ( ( E ` [ t ] .~ ) ( +g ` H ) ( E ` [ u ] .~ ) ) = ( ( H gsum ( T o. t ) ) ( +g ` H ) ( H gsum ( T o. u ) ) ) ) |
| 89 | 80 83 88 | 3eqtr4d | |- ( ( ph /\ ( t e. W /\ u e. W ) ) -> ( E ` ( [ t ] .~ ( +g ` G ) [ u ] .~ ) ) = ( ( E ` [ t ] .~ ) ( +g ` H ) ( E ` [ u ] .~ ) ) ) |
| 90 | 89 | anass1rs | |- ( ( ( ph /\ u e. W ) /\ t e. W ) -> ( E ` ( [ t ] .~ ( +g ` G ) [ u ] .~ ) ) = ( ( E ` [ t ] .~ ) ( +g ` H ) ( E ` [ u ] .~ ) ) ) |
| 91 | 40 51 90 | ectocld | |- ( ( ( ph /\ u e. W ) /\ a e. ( W /. .~ ) ) -> ( E ` ( a ( +g ` G ) [ u ] .~ ) ) = ( ( E ` a ) ( +g ` H ) ( E ` [ u ] .~ ) ) ) |
| 92 | 47 91 | syldan | |- ( ( ( ph /\ u e. W ) /\ a e. X ) -> ( E ` ( a ( +g ` G ) [ u ] .~ ) ) = ( ( E ` a ) ( +g ` H ) ( E ` [ u ] .~ ) ) ) |
| 93 | 92 | an32s | |- ( ( ( ph /\ a e. X ) /\ u e. W ) -> ( E ` ( a ( +g ` G ) [ u ] .~ ) ) = ( ( E ` a ) ( +g ` H ) ( E ` [ u ] .~ ) ) ) |
| 94 | 40 45 93 | ectocld | |- ( ( ( ph /\ a e. X ) /\ c e. ( W /. .~ ) ) -> ( E ` ( a ( +g ` G ) c ) ) = ( ( E ` a ) ( +g ` H ) ( E ` c ) ) ) |
| 95 | 39 94 | syldan | |- ( ( ( ph /\ a e. X ) /\ c e. X ) -> ( E ` ( a ( +g ` G ) c ) ) = ( ( E ` a ) ( +g ` H ) ( E ` c ) ) ) |
| 96 | 95 | anasss | |- ( ( ph /\ ( a e. X /\ c e. X ) ) -> ( E ` ( a ( +g ` G ) c ) ) = ( ( E ` a ) ( +g ` H ) ( E ` c ) ) ) |
| 97 | 10 1 12 13 15 4 16 96 | isghmd | |- ( ph -> E e. ( G GrpHom H ) ) |