This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group homomorphism is a monoid homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ghmmhm | |- ( F e. ( S GrpHom T ) -> F e. ( S MndHom T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmgrp1 | |- ( F e. ( S GrpHom T ) -> S e. Grp ) |
|
| 2 | 1 | grpmndd | |- ( F e. ( S GrpHom T ) -> S e. Mnd ) |
| 3 | ghmgrp2 | |- ( F e. ( S GrpHom T ) -> T e. Grp ) |
|
| 4 | 3 | grpmndd | |- ( F e. ( S GrpHom T ) -> T e. Mnd ) |
| 5 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 6 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 7 | 5 6 | ghmf | |- ( F e. ( S GrpHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 8 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 9 | eqid | |- ( +g ` T ) = ( +g ` T ) |
|
| 10 | 5 8 9 | ghmlin | |- ( ( F e. ( S GrpHom T ) /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
| 11 | 10 | 3expb | |- ( ( F e. ( S GrpHom T ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
| 12 | 11 | ralrimivva | |- ( F e. ( S GrpHom T ) -> A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
| 13 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
| 14 | eqid | |- ( 0g ` T ) = ( 0g ` T ) |
|
| 15 | 13 14 | ghmid | |- ( F e. ( S GrpHom T ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) |
| 16 | 7 12 15 | 3jca | |- ( F e. ( S GrpHom T ) -> ( F : ( Base ` S ) --> ( Base ` T ) /\ A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) /\ ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) ) |
| 17 | 5 6 8 9 13 14 | ismhm | |- ( F e. ( S MndHom T ) <-> ( ( S e. Mnd /\ T e. Mnd ) /\ ( F : ( Base ` S ) --> ( Base ` T ) /\ A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) /\ ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) ) ) |
| 18 | 2 4 16 17 | syl21anbrc | |- ( F e. ( S GrpHom T ) -> F e. ( S MndHom T ) ) |