This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of a generating element is represented by <. A , 1 >. instead of <. A , 0 >. . (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vrgpfval.r | |- .~ = ( ~FG ` I ) |
|
| vrgpfval.u | |- U = ( varFGrp ` I ) |
||
| vrgpf.m | |- G = ( freeGrp ` I ) |
||
| vrgpinv.n | |- N = ( invg ` G ) |
||
| Assertion | vrgpinv | |- ( ( I e. V /\ A e. I ) -> ( N ` ( U ` A ) ) = [ <" <. A , 1o >. "> ] .~ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vrgpfval.r | |- .~ = ( ~FG ` I ) |
|
| 2 | vrgpfval.u | |- U = ( varFGrp ` I ) |
|
| 3 | vrgpf.m | |- G = ( freeGrp ` I ) |
|
| 4 | vrgpinv.n | |- N = ( invg ` G ) |
|
| 5 | 1 2 | vrgpval | |- ( ( I e. V /\ A e. I ) -> ( U ` A ) = [ <" <. A , (/) >. "> ] .~ ) |
| 6 | 5 | fveq2d | |- ( ( I e. V /\ A e. I ) -> ( N ` ( U ` A ) ) = ( N ` [ <" <. A , (/) >. "> ] .~ ) ) |
| 7 | simpr | |- ( ( I e. V /\ A e. I ) -> A e. I ) |
|
| 8 | 0ex | |- (/) e. _V |
|
| 9 | 8 | prid1 | |- (/) e. { (/) , 1o } |
| 10 | df2o3 | |- 2o = { (/) , 1o } |
|
| 11 | 9 10 | eleqtrri | |- (/) e. 2o |
| 12 | opelxpi | |- ( ( A e. I /\ (/) e. 2o ) -> <. A , (/) >. e. ( I X. 2o ) ) |
|
| 13 | 7 11 12 | sylancl | |- ( ( I e. V /\ A e. I ) -> <. A , (/) >. e. ( I X. 2o ) ) |
| 14 | 13 | s1cld | |- ( ( I e. V /\ A e. I ) -> <" <. A , (/) >. "> e. Word ( I X. 2o ) ) |
| 15 | simpl | |- ( ( I e. V /\ A e. I ) -> I e. V ) |
|
| 16 | 2on | |- 2o e. On |
|
| 17 | xpexg | |- ( ( I e. V /\ 2o e. On ) -> ( I X. 2o ) e. _V ) |
|
| 18 | 15 16 17 | sylancl | |- ( ( I e. V /\ A e. I ) -> ( I X. 2o ) e. _V ) |
| 19 | wrdexg | |- ( ( I X. 2o ) e. _V -> Word ( I X. 2o ) e. _V ) |
|
| 20 | fvi | |- ( Word ( I X. 2o ) e. _V -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) |
|
| 21 | 18 19 20 | 3syl | |- ( ( I e. V /\ A e. I ) -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) |
| 22 | 14 21 | eleqtrrd | |- ( ( I e. V /\ A e. I ) -> <" <. A , (/) >. "> e. ( _I ` Word ( I X. 2o ) ) ) |
| 23 | eqid | |- ( _I ` Word ( I X. 2o ) ) = ( _I ` Word ( I X. 2o ) ) |
|
| 24 | eqid | |- ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) = ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) |
|
| 25 | 23 3 1 4 24 | frgpinv | |- ( <" <. A , (/) >. "> e. ( _I ` Word ( I X. 2o ) ) -> ( N ` [ <" <. A , (/) >. "> ] .~ ) = [ ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) o. ( reverse ` <" <. A , (/) >. "> ) ) ] .~ ) |
| 26 | 22 25 | syl | |- ( ( I e. V /\ A e. I ) -> ( N ` [ <" <. A , (/) >. "> ] .~ ) = [ ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) o. ( reverse ` <" <. A , (/) >. "> ) ) ] .~ ) |
| 27 | revs1 | |- ( reverse ` <" <. A , (/) >. "> ) = <" <. A , (/) >. "> |
|
| 28 | 27 | a1i | |- ( ( I e. V /\ A e. I ) -> ( reverse ` <" <. A , (/) >. "> ) = <" <. A , (/) >. "> ) |
| 29 | 28 | coeq2d | |- ( ( I e. V /\ A e. I ) -> ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) o. ( reverse ` <" <. A , (/) >. "> ) ) = ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) o. <" <. A , (/) >. "> ) ) |
| 30 | 24 | efgmf | |- ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) : ( I X. 2o ) --> ( I X. 2o ) |
| 31 | s1co | |- ( ( <. A , (/) >. e. ( I X. 2o ) /\ ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) : ( I X. 2o ) --> ( I X. 2o ) ) -> ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) o. <" <. A , (/) >. "> ) = <" ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) ` <. A , (/) >. ) "> ) |
|
| 32 | 13 30 31 | sylancl | |- ( ( I e. V /\ A e. I ) -> ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) o. <" <. A , (/) >. "> ) = <" ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) ` <. A , (/) >. ) "> ) |
| 33 | 24 | efgmval | |- ( ( A e. I /\ (/) e. 2o ) -> ( A ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) (/) ) = <. A , ( 1o \ (/) ) >. ) |
| 34 | 7 11 33 | sylancl | |- ( ( I e. V /\ A e. I ) -> ( A ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) (/) ) = <. A , ( 1o \ (/) ) >. ) |
| 35 | df-ov | |- ( A ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) (/) ) = ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) ` <. A , (/) >. ) |
|
| 36 | dif0 | |- ( 1o \ (/) ) = 1o |
|
| 37 | 36 | opeq2i | |- <. A , ( 1o \ (/) ) >. = <. A , 1o >. |
| 38 | 34 35 37 | 3eqtr3g | |- ( ( I e. V /\ A e. I ) -> ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) ` <. A , (/) >. ) = <. A , 1o >. ) |
| 39 | 38 | s1eqd | |- ( ( I e. V /\ A e. I ) -> <" ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) ` <. A , (/) >. ) "> = <" <. A , 1o >. "> ) |
| 40 | 29 32 39 | 3eqtrd | |- ( ( I e. V /\ A e. I ) -> ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) o. ( reverse ` <" <. A , (/) >. "> ) ) = <" <. A , 1o >. "> ) |
| 41 | 40 | eceq1d | |- ( ( I e. V /\ A e. I ) -> [ ( ( x e. I , y e. 2o |-> <. x , ( 1o \ y ) >. ) o. ( reverse ` <" <. A , (/) >. "> ) ) ] .~ = [ <" <. A , 1o >. "> ] .~ ) |
| 42 | 6 26 41 | 3eqtrd | |- ( ( I e. V /\ A e. I ) -> ( N ` ( U ` A ) ) = [ <" <. A , 1o >. "> ] .~ ) |