This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frgpup.b | |- B = ( Base ` H ) |
|
| frgpup.n | |- N = ( invg ` H ) |
||
| frgpup.t | |- T = ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) ) |
||
| frgpup.h | |- ( ph -> H e. Grp ) |
||
| frgpup.i | |- ( ph -> I e. V ) |
||
| frgpup.a | |- ( ph -> F : I --> B ) |
||
| Assertion | frgpuptf | |- ( ph -> T : ( I X. 2o ) --> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpup.b | |- B = ( Base ` H ) |
|
| 2 | frgpup.n | |- N = ( invg ` H ) |
|
| 3 | frgpup.t | |- T = ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) ) |
|
| 4 | frgpup.h | |- ( ph -> H e. Grp ) |
|
| 5 | frgpup.i | |- ( ph -> I e. V ) |
|
| 6 | frgpup.a | |- ( ph -> F : I --> B ) |
|
| 7 | 6 | ffvelcdmda | |- ( ( ph /\ y e. I ) -> ( F ` y ) e. B ) |
| 8 | 7 | adantrr | |- ( ( ph /\ ( y e. I /\ z e. 2o ) ) -> ( F ` y ) e. B ) |
| 9 | 1 2 | grpinvcl | |- ( ( H e. Grp /\ ( F ` y ) e. B ) -> ( N ` ( F ` y ) ) e. B ) |
| 10 | 4 8 9 | syl2an2r | |- ( ( ph /\ ( y e. I /\ z e. 2o ) ) -> ( N ` ( F ` y ) ) e. B ) |
| 11 | 8 10 | ifcld | |- ( ( ph /\ ( y e. I /\ z e. 2o ) ) -> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) e. B ) |
| 12 | 11 | ralrimivva | |- ( ph -> A. y e. I A. z e. 2o if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) e. B ) |
| 13 | 3 | fmpo | |- ( A. y e. I A. z e. 2o if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) e. B <-> T : ( I X. 2o ) --> B ) |
| 14 | 12 13 | sylib | |- ( ph -> T : ( I X. 2o ) --> B ) |