This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "natural map" from words of the free monoid to their cosets in the free group is a surjective monoid homomorphism. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frgpmhm.m | |- M = ( freeMnd ` ( I X. 2o ) ) |
|
| frgpmhm.w | |- W = ( Base ` M ) |
||
| frgpmhm.g | |- G = ( freeGrp ` I ) |
||
| frgpmhm.r | |- .~ = ( ~FG ` I ) |
||
| frgpmhm.f | |- F = ( x e. W |-> [ x ] .~ ) |
||
| Assertion | frgpmhm | |- ( I e. V -> F e. ( M MndHom G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgpmhm.m | |- M = ( freeMnd ` ( I X. 2o ) ) |
|
| 2 | frgpmhm.w | |- W = ( Base ` M ) |
|
| 3 | frgpmhm.g | |- G = ( freeGrp ` I ) |
|
| 4 | frgpmhm.r | |- .~ = ( ~FG ` I ) |
|
| 5 | frgpmhm.f | |- F = ( x e. W |-> [ x ] .~ ) |
|
| 6 | 2on | |- 2o e. On |
|
| 7 | xpexg | |- ( ( I e. V /\ 2o e. On ) -> ( I X. 2o ) e. _V ) |
|
| 8 | 6 7 | mpan2 | |- ( I e. V -> ( I X. 2o ) e. _V ) |
| 9 | 1 | frmdmnd | |- ( ( I X. 2o ) e. _V -> M e. Mnd ) |
| 10 | 8 9 | syl | |- ( I e. V -> M e. Mnd ) |
| 11 | 3 | frgpgrp | |- ( I e. V -> G e. Grp ) |
| 12 | 11 | grpmndd | |- ( I e. V -> G e. Mnd ) |
| 13 | 1 2 | frmdbas | |- ( ( I X. 2o ) e. _V -> W = Word ( I X. 2o ) ) |
| 14 | wrdexg | |- ( ( I X. 2o ) e. _V -> Word ( I X. 2o ) e. _V ) |
|
| 15 | fvi | |- ( Word ( I X. 2o ) e. _V -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) |
|
| 16 | 14 15 | syl | |- ( ( I X. 2o ) e. _V -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) |
| 17 | 13 16 | eqtr4d | |- ( ( I X. 2o ) e. _V -> W = ( _I ` Word ( I X. 2o ) ) ) |
| 18 | 8 17 | syl | |- ( I e. V -> W = ( _I ` Word ( I X. 2o ) ) ) |
| 19 | 18 | eleq2d | |- ( I e. V -> ( x e. W <-> x e. ( _I ` Word ( I X. 2o ) ) ) ) |
| 20 | 19 | biimpa | |- ( ( I e. V /\ x e. W ) -> x e. ( _I ` Word ( I X. 2o ) ) ) |
| 21 | eqid | |- ( _I ` Word ( I X. 2o ) ) = ( _I ` Word ( I X. 2o ) ) |
|
| 22 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 23 | 3 4 21 22 | frgpeccl | |- ( x e. ( _I ` Word ( I X. 2o ) ) -> [ x ] .~ e. ( Base ` G ) ) |
| 24 | 20 23 | syl | |- ( ( I e. V /\ x e. W ) -> [ x ] .~ e. ( Base ` G ) ) |
| 25 | 24 5 | fmptd | |- ( I e. V -> F : W --> ( Base ` G ) ) |
| 26 | 21 4 | efger | |- .~ Er ( _I ` Word ( I X. 2o ) ) |
| 27 | ereq2 | |- ( W = ( _I ` Word ( I X. 2o ) ) -> ( .~ Er W <-> .~ Er ( _I ` Word ( I X. 2o ) ) ) ) |
|
| 28 | 18 27 | syl | |- ( I e. V -> ( .~ Er W <-> .~ Er ( _I ` Word ( I X. 2o ) ) ) ) |
| 29 | 26 28 | mpbiri | |- ( I e. V -> .~ Er W ) |
| 30 | 29 | adantr | |- ( ( I e. V /\ ( a e. W /\ b e. W ) ) -> .~ Er W ) |
| 31 | 2 | fvexi | |- W e. _V |
| 32 | 31 | a1i | |- ( ( I e. V /\ ( a e. W /\ b e. W ) ) -> W e. _V ) |
| 33 | 30 32 5 | divsfval | |- ( ( I e. V /\ ( a e. W /\ b e. W ) ) -> ( F ` ( a ++ b ) ) = [ ( a ++ b ) ] .~ ) |
| 34 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 35 | 1 2 34 | frmdadd | |- ( ( a e. W /\ b e. W ) -> ( a ( +g ` M ) b ) = ( a ++ b ) ) |
| 36 | 35 | adantl | |- ( ( I e. V /\ ( a e. W /\ b e. W ) ) -> ( a ( +g ` M ) b ) = ( a ++ b ) ) |
| 37 | 36 | fveq2d | |- ( ( I e. V /\ ( a e. W /\ b e. W ) ) -> ( F ` ( a ( +g ` M ) b ) ) = ( F ` ( a ++ b ) ) ) |
| 38 | 30 32 5 | divsfval | |- ( ( I e. V /\ ( a e. W /\ b e. W ) ) -> ( F ` a ) = [ a ] .~ ) |
| 39 | 30 32 5 | divsfval | |- ( ( I e. V /\ ( a e. W /\ b e. W ) ) -> ( F ` b ) = [ b ] .~ ) |
| 40 | 38 39 | oveq12d | |- ( ( I e. V /\ ( a e. W /\ b e. W ) ) -> ( ( F ` a ) ( +g ` G ) ( F ` b ) ) = ( [ a ] .~ ( +g ` G ) [ b ] .~ ) ) |
| 41 | 18 | eleq2d | |- ( I e. V -> ( a e. W <-> a e. ( _I ` Word ( I X. 2o ) ) ) ) |
| 42 | 18 | eleq2d | |- ( I e. V -> ( b e. W <-> b e. ( _I ` Word ( I X. 2o ) ) ) ) |
| 43 | 41 42 | anbi12d | |- ( I e. V -> ( ( a e. W /\ b e. W ) <-> ( a e. ( _I ` Word ( I X. 2o ) ) /\ b e. ( _I ` Word ( I X. 2o ) ) ) ) ) |
| 44 | 43 | biimpa | |- ( ( I e. V /\ ( a e. W /\ b e. W ) ) -> ( a e. ( _I ` Word ( I X. 2o ) ) /\ b e. ( _I ` Word ( I X. 2o ) ) ) ) |
| 45 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 46 | 21 3 4 45 | frgpadd | |- ( ( a e. ( _I ` Word ( I X. 2o ) ) /\ b e. ( _I ` Word ( I X. 2o ) ) ) -> ( [ a ] .~ ( +g ` G ) [ b ] .~ ) = [ ( a ++ b ) ] .~ ) |
| 47 | 44 46 | syl | |- ( ( I e. V /\ ( a e. W /\ b e. W ) ) -> ( [ a ] .~ ( +g ` G ) [ b ] .~ ) = [ ( a ++ b ) ] .~ ) |
| 48 | 40 47 | eqtrd | |- ( ( I e. V /\ ( a e. W /\ b e. W ) ) -> ( ( F ` a ) ( +g ` G ) ( F ` b ) ) = [ ( a ++ b ) ] .~ ) |
| 49 | 33 37 48 | 3eqtr4d | |- ( ( I e. V /\ ( a e. W /\ b e. W ) ) -> ( F ` ( a ( +g ` M ) b ) ) = ( ( F ` a ) ( +g ` G ) ( F ` b ) ) ) |
| 50 | 49 | ralrimivva | |- ( I e. V -> A. a e. W A. b e. W ( F ` ( a ( +g ` M ) b ) ) = ( ( F ` a ) ( +g ` G ) ( F ` b ) ) ) |
| 51 | 31 | a1i | |- ( I e. V -> W e. _V ) |
| 52 | 29 51 5 | divsfval | |- ( I e. V -> ( F ` (/) ) = [ (/) ] .~ ) |
| 53 | 3 4 | frgp0 | |- ( I e. V -> ( G e. Grp /\ [ (/) ] .~ = ( 0g ` G ) ) ) |
| 54 | 53 | simprd | |- ( I e. V -> [ (/) ] .~ = ( 0g ` G ) ) |
| 55 | 52 54 | eqtrd | |- ( I e. V -> ( F ` (/) ) = ( 0g ` G ) ) |
| 56 | 25 50 55 | 3jca | |- ( I e. V -> ( F : W --> ( Base ` G ) /\ A. a e. W A. b e. W ( F ` ( a ( +g ` M ) b ) ) = ( ( F ` a ) ( +g ` G ) ( F ` b ) ) /\ ( F ` (/) ) = ( 0g ` G ) ) ) |
| 57 | 1 | frmd0 | |- (/) = ( 0g ` M ) |
| 58 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 59 | 2 22 34 45 57 58 | ismhm | |- ( F e. ( M MndHom G ) <-> ( ( M e. Mnd /\ G e. Mnd ) /\ ( F : W --> ( Base ` G ) /\ A. a e. W A. b e. W ( F ` ( a ( +g ` M ) b ) ) = ( ( F ` a ) ( +g ` G ) ( F ` b ) ) /\ ( F ` (/) ) = ( 0g ` G ) ) ) ) |
| 60 | 10 12 56 59 | syl21anbrc | |- ( I e. V -> F e. ( M MndHom G ) ) |