This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Behavior of homomorphisms on finite monoidal sums. (Contributed by Stefan O'Rear, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | gsumwmhm.b | |- B = ( Base ` M ) |
|
| Assertion | gsumwmhm | |- ( ( H e. ( M MndHom N ) /\ W e. Word B ) -> ( H ` ( M gsum W ) ) = ( N gsum ( H o. W ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumwmhm.b | |- B = ( Base ` M ) |
|
| 2 | oveq2 | |- ( W = (/) -> ( M gsum W ) = ( M gsum (/) ) ) |
|
| 3 | eqid | |- ( 0g ` M ) = ( 0g ` M ) |
|
| 4 | 3 | gsum0 | |- ( M gsum (/) ) = ( 0g ` M ) |
| 5 | 2 4 | eqtrdi | |- ( W = (/) -> ( M gsum W ) = ( 0g ` M ) ) |
| 6 | 5 | fveq2d | |- ( W = (/) -> ( H ` ( M gsum W ) ) = ( H ` ( 0g ` M ) ) ) |
| 7 | coeq2 | |- ( W = (/) -> ( H o. W ) = ( H o. (/) ) ) |
|
| 8 | co02 | |- ( H o. (/) ) = (/) |
|
| 9 | 7 8 | eqtrdi | |- ( W = (/) -> ( H o. W ) = (/) ) |
| 10 | 9 | oveq2d | |- ( W = (/) -> ( N gsum ( H o. W ) ) = ( N gsum (/) ) ) |
| 11 | eqid | |- ( 0g ` N ) = ( 0g ` N ) |
|
| 12 | 11 | gsum0 | |- ( N gsum (/) ) = ( 0g ` N ) |
| 13 | 10 12 | eqtrdi | |- ( W = (/) -> ( N gsum ( H o. W ) ) = ( 0g ` N ) ) |
| 14 | 6 13 | eqeq12d | |- ( W = (/) -> ( ( H ` ( M gsum W ) ) = ( N gsum ( H o. W ) ) <-> ( H ` ( 0g ` M ) ) = ( 0g ` N ) ) ) |
| 15 | mhmrcl1 | |- ( H e. ( M MndHom N ) -> M e. Mnd ) |
|
| 16 | 15 | ad2antrr | |- ( ( ( H e. ( M MndHom N ) /\ W e. Word B ) /\ W =/= (/) ) -> M e. Mnd ) |
| 17 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 18 | 1 17 | mndcl | |- ( ( M e. Mnd /\ x e. B /\ y e. B ) -> ( x ( +g ` M ) y ) e. B ) |
| 19 | 18 | 3expb | |- ( ( M e. Mnd /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` M ) y ) e. B ) |
| 20 | 16 19 | sylan | |- ( ( ( ( H e. ( M MndHom N ) /\ W e. Word B ) /\ W =/= (/) ) /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` M ) y ) e. B ) |
| 21 | wrdf | |- ( W e. Word B -> W : ( 0 ..^ ( # ` W ) ) --> B ) |
|
| 22 | 21 | ad2antlr | |- ( ( ( H e. ( M MndHom N ) /\ W e. Word B ) /\ W =/= (/) ) -> W : ( 0 ..^ ( # ` W ) ) --> B ) |
| 23 | wrdfin | |- ( W e. Word B -> W e. Fin ) |
|
| 24 | 23 | adantl | |- ( ( H e. ( M MndHom N ) /\ W e. Word B ) -> W e. Fin ) |
| 25 | hashnncl | |- ( W e. Fin -> ( ( # ` W ) e. NN <-> W =/= (/) ) ) |
|
| 26 | 24 25 | syl | |- ( ( H e. ( M MndHom N ) /\ W e. Word B ) -> ( ( # ` W ) e. NN <-> W =/= (/) ) ) |
| 27 | 26 | biimpar | |- ( ( ( H e. ( M MndHom N ) /\ W e. Word B ) /\ W =/= (/) ) -> ( # ` W ) e. NN ) |
| 28 | 27 | nnzd | |- ( ( ( H e. ( M MndHom N ) /\ W e. Word B ) /\ W =/= (/) ) -> ( # ` W ) e. ZZ ) |
| 29 | fzoval | |- ( ( # ` W ) e. ZZ -> ( 0 ..^ ( # ` W ) ) = ( 0 ... ( ( # ` W ) - 1 ) ) ) |
|
| 30 | 28 29 | syl | |- ( ( ( H e. ( M MndHom N ) /\ W e. Word B ) /\ W =/= (/) ) -> ( 0 ..^ ( # ` W ) ) = ( 0 ... ( ( # ` W ) - 1 ) ) ) |
| 31 | 30 | feq2d | |- ( ( ( H e. ( M MndHom N ) /\ W e. Word B ) /\ W =/= (/) ) -> ( W : ( 0 ..^ ( # ` W ) ) --> B <-> W : ( 0 ... ( ( # ` W ) - 1 ) ) --> B ) ) |
| 32 | 22 31 | mpbid | |- ( ( ( H e. ( M MndHom N ) /\ W e. Word B ) /\ W =/= (/) ) -> W : ( 0 ... ( ( # ` W ) - 1 ) ) --> B ) |
| 33 | 32 | ffvelcdmda | |- ( ( ( ( H e. ( M MndHom N ) /\ W e. Word B ) /\ W =/= (/) ) /\ x e. ( 0 ... ( ( # ` W ) - 1 ) ) ) -> ( W ` x ) e. B ) |
| 34 | nnm1nn0 | |- ( ( # ` W ) e. NN -> ( ( # ` W ) - 1 ) e. NN0 ) |
|
| 35 | 27 34 | syl | |- ( ( ( H e. ( M MndHom N ) /\ W e. Word B ) /\ W =/= (/) ) -> ( ( # ` W ) - 1 ) e. NN0 ) |
| 36 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 37 | 35 36 | eleqtrdi | |- ( ( ( H e. ( M MndHom N ) /\ W e. Word B ) /\ W =/= (/) ) -> ( ( # ` W ) - 1 ) e. ( ZZ>= ` 0 ) ) |
| 38 | eqid | |- ( +g ` N ) = ( +g ` N ) |
|
| 39 | 1 17 38 | mhmlin | |- ( ( H e. ( M MndHom N ) /\ x e. B /\ y e. B ) -> ( H ` ( x ( +g ` M ) y ) ) = ( ( H ` x ) ( +g ` N ) ( H ` y ) ) ) |
| 40 | 39 | 3expb | |- ( ( H e. ( M MndHom N ) /\ ( x e. B /\ y e. B ) ) -> ( H ` ( x ( +g ` M ) y ) ) = ( ( H ` x ) ( +g ` N ) ( H ` y ) ) ) |
| 41 | 40 | ad4ant14 | |- ( ( ( ( H e. ( M MndHom N ) /\ W e. Word B ) /\ W =/= (/) ) /\ ( x e. B /\ y e. B ) ) -> ( H ` ( x ( +g ` M ) y ) ) = ( ( H ` x ) ( +g ` N ) ( H ` y ) ) ) |
| 42 | 32 | ffnd | |- ( ( ( H e. ( M MndHom N ) /\ W e. Word B ) /\ W =/= (/) ) -> W Fn ( 0 ... ( ( # ` W ) - 1 ) ) ) |
| 43 | fvco2 | |- ( ( W Fn ( 0 ... ( ( # ` W ) - 1 ) ) /\ x e. ( 0 ... ( ( # ` W ) - 1 ) ) ) -> ( ( H o. W ) ` x ) = ( H ` ( W ` x ) ) ) |
|
| 44 | 42 43 | sylan | |- ( ( ( ( H e. ( M MndHom N ) /\ W e. Word B ) /\ W =/= (/) ) /\ x e. ( 0 ... ( ( # ` W ) - 1 ) ) ) -> ( ( H o. W ) ` x ) = ( H ` ( W ` x ) ) ) |
| 45 | 44 | eqcomd | |- ( ( ( ( H e. ( M MndHom N ) /\ W e. Word B ) /\ W =/= (/) ) /\ x e. ( 0 ... ( ( # ` W ) - 1 ) ) ) -> ( H ` ( W ` x ) ) = ( ( H o. W ) ` x ) ) |
| 46 | 20 33 37 41 45 | seqhomo | |- ( ( ( H e. ( M MndHom N ) /\ W e. Word B ) /\ W =/= (/) ) -> ( H ` ( seq 0 ( ( +g ` M ) , W ) ` ( ( # ` W ) - 1 ) ) ) = ( seq 0 ( ( +g ` N ) , ( H o. W ) ) ` ( ( # ` W ) - 1 ) ) ) |
| 47 | 1 17 16 37 32 | gsumval2 | |- ( ( ( H e. ( M MndHom N ) /\ W e. Word B ) /\ W =/= (/) ) -> ( M gsum W ) = ( seq 0 ( ( +g ` M ) , W ) ` ( ( # ` W ) - 1 ) ) ) |
| 48 | 47 | fveq2d | |- ( ( ( H e. ( M MndHom N ) /\ W e. Word B ) /\ W =/= (/) ) -> ( H ` ( M gsum W ) ) = ( H ` ( seq 0 ( ( +g ` M ) , W ) ` ( ( # ` W ) - 1 ) ) ) ) |
| 49 | eqid | |- ( Base ` N ) = ( Base ` N ) |
|
| 50 | mhmrcl2 | |- ( H e. ( M MndHom N ) -> N e. Mnd ) |
|
| 51 | 50 | ad2antrr | |- ( ( ( H e. ( M MndHom N ) /\ W e. Word B ) /\ W =/= (/) ) -> N e. Mnd ) |
| 52 | 1 49 | mhmf | |- ( H e. ( M MndHom N ) -> H : B --> ( Base ` N ) ) |
| 53 | 52 | ad2antrr | |- ( ( ( H e. ( M MndHom N ) /\ W e. Word B ) /\ W =/= (/) ) -> H : B --> ( Base ` N ) ) |
| 54 | fco | |- ( ( H : B --> ( Base ` N ) /\ W : ( 0 ... ( ( # ` W ) - 1 ) ) --> B ) -> ( H o. W ) : ( 0 ... ( ( # ` W ) - 1 ) ) --> ( Base ` N ) ) |
|
| 55 | 53 32 54 | syl2anc | |- ( ( ( H e. ( M MndHom N ) /\ W e. Word B ) /\ W =/= (/) ) -> ( H o. W ) : ( 0 ... ( ( # ` W ) - 1 ) ) --> ( Base ` N ) ) |
| 56 | 49 38 51 37 55 | gsumval2 | |- ( ( ( H e. ( M MndHom N ) /\ W e. Word B ) /\ W =/= (/) ) -> ( N gsum ( H o. W ) ) = ( seq 0 ( ( +g ` N ) , ( H o. W ) ) ` ( ( # ` W ) - 1 ) ) ) |
| 57 | 46 48 56 | 3eqtr4d | |- ( ( ( H e. ( M MndHom N ) /\ W e. Word B ) /\ W =/= (/) ) -> ( H ` ( M gsum W ) ) = ( N gsum ( H o. W ) ) ) |
| 58 | 3 11 | mhm0 | |- ( H e. ( M MndHom N ) -> ( H ` ( 0g ` M ) ) = ( 0g ` N ) ) |
| 59 | 58 | adantr | |- ( ( H e. ( M MndHom N ) /\ W e. Word B ) -> ( H ` ( 0g ` M ) ) = ( 0g ` N ) ) |
| 60 | 14 57 59 | pm2.61ne | |- ( ( H e. ( M MndHom N ) /\ W e. Word B ) -> ( H ` ( M gsum W ) ) = ( N gsum ( H o. W ) ) ) |