This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the function in qusval . (Contributed by Mario Carneiro, 24-Feb-2015) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by AV, 12-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ercpbl.r | |- ( ph -> .~ Er V ) |
|
| ercpbl.v | |- ( ph -> V e. W ) |
||
| ercpbl.f | |- F = ( x e. V |-> [ x ] .~ ) |
||
| Assertion | divsfval | |- ( ph -> ( F ` A ) = [ A ] .~ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ercpbl.r | |- ( ph -> .~ Er V ) |
|
| 2 | ercpbl.v | |- ( ph -> V e. W ) |
|
| 3 | ercpbl.f | |- F = ( x e. V |-> [ x ] .~ ) |
|
| 4 | 1 | ecss | |- ( ph -> [ A ] .~ C_ V ) |
| 5 | 2 4 | ssexd | |- ( ph -> [ A ] .~ e. _V ) |
| 6 | eceq1 | |- ( x = A -> [ x ] .~ = [ A ] .~ ) |
|
| 7 | 6 3 | fvmptg | |- ( ( A e. V /\ [ A ] .~ e. _V ) -> ( F ` A ) = [ A ] .~ ) |
| 8 | 5 7 | sylan2 | |- ( ( A e. V /\ ph ) -> ( F ` A ) = [ A ] .~ ) |
| 9 | 8 | expcom | |- ( ph -> ( A e. V -> ( F ` A ) = [ A ] .~ ) ) |
| 10 | 3 | dmeqi | |- dom F = dom ( x e. V |-> [ x ] .~ ) |
| 11 | 1 | ecss | |- ( ph -> [ x ] .~ C_ V ) |
| 12 | 2 11 | ssexd | |- ( ph -> [ x ] .~ e. _V ) |
| 13 | 12 | ralrimivw | |- ( ph -> A. x e. V [ x ] .~ e. _V ) |
| 14 | dmmptg | |- ( A. x e. V [ x ] .~ e. _V -> dom ( x e. V |-> [ x ] .~ ) = V ) |
|
| 15 | 13 14 | syl | |- ( ph -> dom ( x e. V |-> [ x ] .~ ) = V ) |
| 16 | 10 15 | eqtrid | |- ( ph -> dom F = V ) |
| 17 | 16 | eleq2d | |- ( ph -> ( A e. dom F <-> A e. V ) ) |
| 18 | 17 | notbid | |- ( ph -> ( -. A e. dom F <-> -. A e. V ) ) |
| 19 | ndmfv | |- ( -. A e. dom F -> ( F ` A ) = (/) ) |
|
| 20 | 18 19 | biimtrrdi | |- ( ph -> ( -. A e. V -> ( F ` A ) = (/) ) ) |
| 21 | ecdmn0 | |- ( A e. dom .~ <-> [ A ] .~ =/= (/) ) |
|
| 22 | erdm | |- ( .~ Er V -> dom .~ = V ) |
|
| 23 | 1 22 | syl | |- ( ph -> dom .~ = V ) |
| 24 | 23 | eleq2d | |- ( ph -> ( A e. dom .~ <-> A e. V ) ) |
| 25 | 24 | biimpd | |- ( ph -> ( A e. dom .~ -> A e. V ) ) |
| 26 | 21 25 | biimtrrid | |- ( ph -> ( [ A ] .~ =/= (/) -> A e. V ) ) |
| 27 | 26 | necon1bd | |- ( ph -> ( -. A e. V -> [ A ] .~ = (/) ) ) |
| 28 | 20 27 | jcad | |- ( ph -> ( -. A e. V -> ( ( F ` A ) = (/) /\ [ A ] .~ = (/) ) ) ) |
| 29 | eqtr3 | |- ( ( ( F ` A ) = (/) /\ [ A ] .~ = (/) ) -> ( F ` A ) = [ A ] .~ ) |
|
| 30 | 28 29 | syl6 | |- ( ph -> ( -. A e. V -> ( F ` A ) = [ A ] .~ ) ) |
| 31 | 9 30 | pm2.61d | |- ( ph -> ( F ` A ) = [ A ] .~ ) |