This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class is an even permutation if it is a permutation with sign 1. (Contributed by SO, 9-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evpmss.s | |- S = ( SymGrp ` D ) |
|
| evpmss.p | |- P = ( Base ` S ) |
||
| psgnevpmb.n | |- N = ( pmSgn ` D ) |
||
| Assertion | psgnevpmb | |- ( D e. Fin -> ( F e. ( pmEven ` D ) <-> ( F e. P /\ ( N ` F ) = 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evpmss.s | |- S = ( SymGrp ` D ) |
|
| 2 | evpmss.p | |- P = ( Base ` S ) |
|
| 3 | psgnevpmb.n | |- N = ( pmSgn ` D ) |
|
| 4 | elex | |- ( D e. Fin -> D e. _V ) |
|
| 5 | fveq2 | |- ( d = D -> ( pmSgn ` d ) = ( pmSgn ` D ) ) |
|
| 6 | 5 3 | eqtr4di | |- ( d = D -> ( pmSgn ` d ) = N ) |
| 7 | 6 | cnveqd | |- ( d = D -> `' ( pmSgn ` d ) = `' N ) |
| 8 | 7 | imaeq1d | |- ( d = D -> ( `' ( pmSgn ` d ) " { 1 } ) = ( `' N " { 1 } ) ) |
| 9 | df-evpm | |- pmEven = ( d e. _V |-> ( `' ( pmSgn ` d ) " { 1 } ) ) |
|
| 10 | 3 | fvexi | |- N e. _V |
| 11 | 10 | cnvex | |- `' N e. _V |
| 12 | 11 | imaex | |- ( `' N " { 1 } ) e. _V |
| 13 | 8 9 12 | fvmpt | |- ( D e. _V -> ( pmEven ` D ) = ( `' N " { 1 } ) ) |
| 14 | 4 13 | syl | |- ( D e. Fin -> ( pmEven ` D ) = ( `' N " { 1 } ) ) |
| 15 | 14 | eleq2d | |- ( D e. Fin -> ( F e. ( pmEven ` D ) <-> F e. ( `' N " { 1 } ) ) ) |
| 16 | eqid | |- ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
|
| 17 | 1 3 16 | psgnghm2 | |- ( D e. Fin -> N e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 18 | eqid | |- ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) = ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) |
|
| 19 | 2 18 | ghmf | |- ( N e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) -> N : P --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 20 | ffn | |- ( N : P --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) -> N Fn P ) |
|
| 21 | fniniseg | |- ( N Fn P -> ( F e. ( `' N " { 1 } ) <-> ( F e. P /\ ( N ` F ) = 1 ) ) ) |
|
| 22 | 17 19 20 21 | 4syl | |- ( D e. Fin -> ( F e. ( `' N " { 1 } ) <-> ( F e. P /\ ( N ` F ) = 1 ) ) ) |
| 23 | 15 22 | bitrd | |- ( D e. Fin -> ( F e. ( pmEven ` D ) <-> ( F e. P /\ ( N ` F ) = 1 ) ) ) |