This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sign of a permutation equals the sign of the inverse of the permutation. (Contributed by SO, 9-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgninv.s | |- S = ( SymGrp ` D ) |
|
| psgninv.n | |- N = ( pmSgn ` D ) |
||
| psgninv.p | |- P = ( Base ` S ) |
||
| Assertion | psgninv | |- ( ( D e. Fin /\ F e. P ) -> ( N ` `' F ) = ( N ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgninv.s | |- S = ( SymGrp ` D ) |
|
| 2 | psgninv.n | |- N = ( pmSgn ` D ) |
|
| 3 | psgninv.p | |- P = ( Base ` S ) |
|
| 4 | eqid | |- ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
|
| 5 | 1 2 4 | psgnghm2 | |- ( D e. Fin -> N e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 6 | eqid | |- ( invg ` S ) = ( invg ` S ) |
|
| 7 | eqid | |- ( invg ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) = ( invg ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) |
|
| 8 | 3 6 7 | ghminv | |- ( ( N e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) /\ F e. P ) -> ( N ` ( ( invg ` S ) ` F ) ) = ( ( invg ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ` ( N ` F ) ) ) |
| 9 | 5 8 | sylan | |- ( ( D e. Fin /\ F e. P ) -> ( N ` ( ( invg ` S ) ` F ) ) = ( ( invg ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ` ( N ` F ) ) ) |
| 10 | 1 3 6 | symginv | |- ( F e. P -> ( ( invg ` S ) ` F ) = `' F ) |
| 11 | 10 | adantl | |- ( ( D e. Fin /\ F e. P ) -> ( ( invg ` S ) ` F ) = `' F ) |
| 12 | 11 | fveq2d | |- ( ( D e. Fin /\ F e. P ) -> ( N ` ( ( invg ` S ) ` F ) ) = ( N ` `' F ) ) |
| 13 | eqid | |- ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |
|
| 14 | 13 | cnmsgnsubg | |- { 1 , -u 1 } e. ( SubGrp ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) |
| 15 | 4 | cnmsgnbas | |- { 1 , -u 1 } = ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) |
| 16 | 3 15 | ghmf | |- ( N e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) -> N : P --> { 1 , -u 1 } ) |
| 17 | 5 16 | syl | |- ( D e. Fin -> N : P --> { 1 , -u 1 } ) |
| 18 | 17 | ffvelcdmda | |- ( ( D e. Fin /\ F e. P ) -> ( N ` F ) e. { 1 , -u 1 } ) |
| 19 | cnex | |- CC e. _V |
|
| 20 | 19 | difexi | |- ( CC \ { 0 } ) e. _V |
| 21 | ax-1cn | |- 1 e. CC |
|
| 22 | ax-1ne0 | |- 1 =/= 0 |
|
| 23 | eldifsn | |- ( 1 e. ( CC \ { 0 } ) <-> ( 1 e. CC /\ 1 =/= 0 ) ) |
|
| 24 | 21 22 23 | mpbir2an | |- 1 e. ( CC \ { 0 } ) |
| 25 | neg1cn | |- -u 1 e. CC |
|
| 26 | neg1ne0 | |- -u 1 =/= 0 |
|
| 27 | eldifsn | |- ( -u 1 e. ( CC \ { 0 } ) <-> ( -u 1 e. CC /\ -u 1 =/= 0 ) ) |
|
| 28 | 25 26 27 | mpbir2an | |- -u 1 e. ( CC \ { 0 } ) |
| 29 | prssi | |- ( ( 1 e. ( CC \ { 0 } ) /\ -u 1 e. ( CC \ { 0 } ) ) -> { 1 , -u 1 } C_ ( CC \ { 0 } ) ) |
|
| 30 | 24 28 29 | mp2an | |- { 1 , -u 1 } C_ ( CC \ { 0 } ) |
| 31 | ressabs | |- ( ( ( CC \ { 0 } ) e. _V /\ { 1 , -u 1 } C_ ( CC \ { 0 } ) ) -> ( ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) |
|
| 32 | 20 30 31 | mp2an | |- ( ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
| 33 | 32 | eqcomi | |- ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |`s { 1 , -u 1 } ) |
| 34 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 35 | cnfld0 | |- 0 = ( 0g ` CCfld ) |
|
| 36 | cndrng | |- CCfld e. DivRing |
|
| 37 | 34 35 36 | drngui | |- ( CC \ { 0 } ) = ( Unit ` CCfld ) |
| 38 | eqid | |- ( invr ` CCfld ) = ( invr ` CCfld ) |
|
| 39 | 37 13 38 | invrfval | |- ( invr ` CCfld ) = ( invg ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) |
| 40 | 33 39 7 | subginv | |- ( ( { 1 , -u 1 } e. ( SubGrp ` ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) ) /\ ( N ` F ) e. { 1 , -u 1 } ) -> ( ( invr ` CCfld ) ` ( N ` F ) ) = ( ( invg ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ` ( N ` F ) ) ) |
| 41 | 14 18 40 | sylancr | |- ( ( D e. Fin /\ F e. P ) -> ( ( invr ` CCfld ) ` ( N ` F ) ) = ( ( invg ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ` ( N ` F ) ) ) |
| 42 | 30 18 | sselid | |- ( ( D e. Fin /\ F e. P ) -> ( N ` F ) e. ( CC \ { 0 } ) ) |
| 43 | eldifsn | |- ( ( N ` F ) e. ( CC \ { 0 } ) <-> ( ( N ` F ) e. CC /\ ( N ` F ) =/= 0 ) ) |
|
| 44 | 42 43 | sylib | |- ( ( D e. Fin /\ F e. P ) -> ( ( N ` F ) e. CC /\ ( N ` F ) =/= 0 ) ) |
| 45 | cnfldinv | |- ( ( ( N ` F ) e. CC /\ ( N ` F ) =/= 0 ) -> ( ( invr ` CCfld ) ` ( N ` F ) ) = ( 1 / ( N ` F ) ) ) |
|
| 46 | 44 45 | syl | |- ( ( D e. Fin /\ F e. P ) -> ( ( invr ` CCfld ) ` ( N ` F ) ) = ( 1 / ( N ` F ) ) ) |
| 47 | 41 46 | eqtr3d | |- ( ( D e. Fin /\ F e. P ) -> ( ( invg ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ` ( N ` F ) ) = ( 1 / ( N ` F ) ) ) |
| 48 | 9 12 47 | 3eqtr3d | |- ( ( D e. Fin /\ F e. P ) -> ( N ` `' F ) = ( 1 / ( N ` F ) ) ) |
| 49 | fvex | |- ( N ` F ) e. _V |
|
| 50 | 49 | elpr | |- ( ( N ` F ) e. { 1 , -u 1 } <-> ( ( N ` F ) = 1 \/ ( N ` F ) = -u 1 ) ) |
| 51 | 1div1e1 | |- ( 1 / 1 ) = 1 |
|
| 52 | oveq2 | |- ( ( N ` F ) = 1 -> ( 1 / ( N ` F ) ) = ( 1 / 1 ) ) |
|
| 53 | id | |- ( ( N ` F ) = 1 -> ( N ` F ) = 1 ) |
|
| 54 | 51 52 53 | 3eqtr4a | |- ( ( N ` F ) = 1 -> ( 1 / ( N ` F ) ) = ( N ` F ) ) |
| 55 | divneg2 | |- ( ( 1 e. CC /\ 1 e. CC /\ 1 =/= 0 ) -> -u ( 1 / 1 ) = ( 1 / -u 1 ) ) |
|
| 56 | 21 21 22 55 | mp3an | |- -u ( 1 / 1 ) = ( 1 / -u 1 ) |
| 57 | 51 | negeqi | |- -u ( 1 / 1 ) = -u 1 |
| 58 | 56 57 | eqtr3i | |- ( 1 / -u 1 ) = -u 1 |
| 59 | oveq2 | |- ( ( N ` F ) = -u 1 -> ( 1 / ( N ` F ) ) = ( 1 / -u 1 ) ) |
|
| 60 | id | |- ( ( N ` F ) = -u 1 -> ( N ` F ) = -u 1 ) |
|
| 61 | 58 59 60 | 3eqtr4a | |- ( ( N ` F ) = -u 1 -> ( 1 / ( N ` F ) ) = ( N ` F ) ) |
| 62 | 54 61 | jaoi | |- ( ( ( N ` F ) = 1 \/ ( N ` F ) = -u 1 ) -> ( 1 / ( N ` F ) ) = ( N ` F ) ) |
| 63 | 50 62 | sylbi | |- ( ( N ` F ) e. { 1 , -u 1 } -> ( 1 / ( N ` F ) ) = ( N ` F ) ) |
| 64 | 18 63 | syl | |- ( ( D e. Fin /\ F e. P ) -> ( 1 / ( N ` F ) ) = ( N ` F ) ) |
| 65 | 48 64 | eqtrd | |- ( ( D e. Fin /\ F e. P ) -> ( N ` `' F ) = ( N ` F ) ) |