This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A permutation which is odd (i.e. not even) has sign -1. (Contributed by SO, 9-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evpmss.s | |- S = ( SymGrp ` D ) |
|
| evpmss.p | |- P = ( Base ` S ) |
||
| psgnevpmb.n | |- N = ( pmSgn ` D ) |
||
| Assertion | psgnodpm | |- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( N ` F ) = -u 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evpmss.s | |- S = ( SymGrp ` D ) |
|
| 2 | evpmss.p | |- P = ( Base ` S ) |
|
| 3 | psgnevpmb.n | |- N = ( pmSgn ` D ) |
|
| 4 | eldif | |- ( F e. ( P \ ( pmEven ` D ) ) <-> ( F e. P /\ -. F e. ( pmEven ` D ) ) ) |
|
| 5 | simpr | |- ( ( D e. Fin /\ F e. P ) -> F e. P ) |
|
| 6 | 5 | a1d | |- ( ( D e. Fin /\ F e. P ) -> ( ( N ` F ) = 1 -> F e. P ) ) |
| 7 | 6 | ancrd | |- ( ( D e. Fin /\ F e. P ) -> ( ( N ` F ) = 1 -> ( F e. P /\ ( N ` F ) = 1 ) ) ) |
| 8 | 1 2 3 | psgnevpmb | |- ( D e. Fin -> ( F e. ( pmEven ` D ) <-> ( F e. P /\ ( N ` F ) = 1 ) ) ) |
| 9 | 8 | adantr | |- ( ( D e. Fin /\ F e. P ) -> ( F e. ( pmEven ` D ) <-> ( F e. P /\ ( N ` F ) = 1 ) ) ) |
| 10 | 7 9 | sylibrd | |- ( ( D e. Fin /\ F e. P ) -> ( ( N ` F ) = 1 -> F e. ( pmEven ` D ) ) ) |
| 11 | 10 | con3d | |- ( ( D e. Fin /\ F e. P ) -> ( -. F e. ( pmEven ` D ) -> -. ( N ` F ) = 1 ) ) |
| 12 | 11 | impr | |- ( ( D e. Fin /\ ( F e. P /\ -. F e. ( pmEven ` D ) ) ) -> -. ( N ` F ) = 1 ) |
| 13 | 4 12 | sylan2b | |- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> -. ( N ` F ) = 1 ) |
| 14 | eqid | |- ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
|
| 15 | 1 3 14 | psgnghm2 | |- ( D e. Fin -> N e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 16 | 15 | adantr | |- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> N e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 17 | 14 | cnmsgnbas | |- { 1 , -u 1 } = ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) |
| 18 | 2 17 | ghmf | |- ( N e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) -> N : P --> { 1 , -u 1 } ) |
| 19 | 16 18 | syl | |- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> N : P --> { 1 , -u 1 } ) |
| 20 | eldifi | |- ( F e. ( P \ ( pmEven ` D ) ) -> F e. P ) |
|
| 21 | 20 | adantl | |- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> F e. P ) |
| 22 | 19 21 | ffvelcdmd | |- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( N ` F ) e. { 1 , -u 1 } ) |
| 23 | fvex | |- ( N ` F ) e. _V |
|
| 24 | 23 | elpr | |- ( ( N ` F ) e. { 1 , -u 1 } <-> ( ( N ` F ) = 1 \/ ( N ` F ) = -u 1 ) ) |
| 25 | 22 24 | sylib | |- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( ( N ` F ) = 1 \/ ( N ` F ) = -u 1 ) ) |
| 26 | orel1 | |- ( -. ( N ` F ) = 1 -> ( ( ( N ` F ) = 1 \/ ( N ` F ) = -u 1 ) -> ( N ` F ) = -u 1 ) ) |
|
| 27 | 13 25 26 | sylc | |- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( N ` F ) = -u 1 ) |