This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group inverse in the symmetric group corresponds to the functional inverse. (Contributed by Stefan O'Rear, 24-Aug-2015) (Revised by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symggrp.1 | |- G = ( SymGrp ` A ) |
|
| symginv.2 | |- B = ( Base ` G ) |
||
| symginv.3 | |- N = ( invg ` G ) |
||
| Assertion | symginv | |- ( F e. B -> ( N ` F ) = `' F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symggrp.1 | |- G = ( SymGrp ` A ) |
|
| 2 | symginv.2 | |- B = ( Base ` G ) |
|
| 3 | symginv.3 | |- N = ( invg ` G ) |
|
| 4 | 1 2 | elsymgbas2 | |- ( F e. B -> ( F e. B <-> F : A -1-1-onto-> A ) ) |
| 5 | 4 | ibi | |- ( F e. B -> F : A -1-1-onto-> A ) |
| 6 | f1ocnv | |- ( F : A -1-1-onto-> A -> `' F : A -1-1-onto-> A ) |
|
| 7 | 5 6 | syl | |- ( F e. B -> `' F : A -1-1-onto-> A ) |
| 8 | cnvexg | |- ( F e. B -> `' F e. _V ) |
|
| 9 | 1 2 | elsymgbas2 | |- ( `' F e. _V -> ( `' F e. B <-> `' F : A -1-1-onto-> A ) ) |
| 10 | 8 9 | syl | |- ( F e. B -> ( `' F e. B <-> `' F : A -1-1-onto-> A ) ) |
| 11 | 7 10 | mpbird | |- ( F e. B -> `' F e. B ) |
| 12 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 13 | 1 2 12 | symgov | |- ( ( F e. B /\ `' F e. B ) -> ( F ( +g ` G ) `' F ) = ( F o. `' F ) ) |
| 14 | 11 13 | mpdan | |- ( F e. B -> ( F ( +g ` G ) `' F ) = ( F o. `' F ) ) |
| 15 | f1ococnv2 | |- ( F : A -1-1-onto-> A -> ( F o. `' F ) = ( _I |` A ) ) |
|
| 16 | 5 15 | syl | |- ( F e. B -> ( F o. `' F ) = ( _I |` A ) ) |
| 17 | 1 2 | elbasfv | |- ( F e. B -> A e. _V ) |
| 18 | 1 | symgid | |- ( A e. _V -> ( _I |` A ) = ( 0g ` G ) ) |
| 19 | 17 18 | syl | |- ( F e. B -> ( _I |` A ) = ( 0g ` G ) ) |
| 20 | 14 16 19 | 3eqtrd | |- ( F e. B -> ( F ( +g ` G ) `' F ) = ( 0g ` G ) ) |
| 21 | 1 | symggrp | |- ( A e. _V -> G e. Grp ) |
| 22 | 17 21 | syl | |- ( F e. B -> G e. Grp ) |
| 23 | id | |- ( F e. B -> F e. B ) |
|
| 24 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 25 | 2 12 24 3 | grpinvid1 | |- ( ( G e. Grp /\ F e. B /\ `' F e. B ) -> ( ( N ` F ) = `' F <-> ( F ( +g ` G ) `' F ) = ( 0g ` G ) ) ) |
| 26 | 22 23 11 25 | syl3anc | |- ( F e. B -> ( ( N ` F ) = `' F <-> ( F ( +g ` G ) `' F ) = ( 0g ` G ) ) ) |
| 27 | 20 26 | mpbird | |- ( F e. B -> ( N ` F ) = `' F ) |