This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function on a closed interval with nonzero derivative is either monotone increasing or monotone decreasing. (Contributed by Mario Carneiro, 19-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvne0.a | |- ( ph -> A e. RR ) |
|
| dvne0.b | |- ( ph -> B e. RR ) |
||
| dvne0.f | |- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
||
| dvne0.d | |- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
||
| dvne0.z | |- ( ph -> -. 0 e. ran ( RR _D F ) ) |
||
| Assertion | dvne0 | |- ( ph -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvne0.a | |- ( ph -> A e. RR ) |
|
| 2 | dvne0.b | |- ( ph -> B e. RR ) |
|
| 3 | dvne0.f | |- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
|
| 4 | dvne0.d | |- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
|
| 5 | dvne0.z | |- ( ph -> -. 0 e. ran ( RR _D F ) ) |
|
| 6 | eleq1 | |- ( x = 0 -> ( x e. ran ( RR _D F ) <-> 0 e. ran ( RR _D F ) ) ) |
|
| 7 | 6 | notbid | |- ( x = 0 -> ( -. x e. ran ( RR _D F ) <-> -. 0 e. ran ( RR _D F ) ) ) |
| 8 | 5 7 | syl5ibrcom | |- ( ph -> ( x = 0 -> -. x e. ran ( RR _D F ) ) ) |
| 9 | 8 | necon2ad | |- ( ph -> ( x e. ran ( RR _D F ) -> x =/= 0 ) ) |
| 10 | 9 | imp | |- ( ( ph /\ x e. ran ( RR _D F ) ) -> x =/= 0 ) |
| 11 | cncff | |- ( F e. ( ( A [,] B ) -cn-> RR ) -> F : ( A [,] B ) --> RR ) |
|
| 12 | 3 11 | syl | |- ( ph -> F : ( A [,] B ) --> RR ) |
| 13 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 14 | 1 2 13 | syl2anc | |- ( ph -> ( A [,] B ) C_ RR ) |
| 15 | dvfre | |- ( ( F : ( A [,] B ) --> RR /\ ( A [,] B ) C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
|
| 16 | 12 14 15 | syl2anc | |- ( ph -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
| 17 | 16 | frnd | |- ( ph -> ran ( RR _D F ) C_ RR ) |
| 18 | 17 | sselda | |- ( ( ph /\ x e. ran ( RR _D F ) ) -> x e. RR ) |
| 19 | 0re | |- 0 e. RR |
|
| 20 | lttri2 | |- ( ( x e. RR /\ 0 e. RR ) -> ( x =/= 0 <-> ( x < 0 \/ 0 < x ) ) ) |
|
| 21 | 18 19 20 | sylancl | |- ( ( ph /\ x e. ran ( RR _D F ) ) -> ( x =/= 0 <-> ( x < 0 \/ 0 < x ) ) ) |
| 22 | 0xr | |- 0 e. RR* |
|
| 23 | elioomnf | |- ( 0 e. RR* -> ( x e. ( -oo (,) 0 ) <-> ( x e. RR /\ x < 0 ) ) ) |
|
| 24 | 22 23 | ax-mp | |- ( x e. ( -oo (,) 0 ) <-> ( x e. RR /\ x < 0 ) ) |
| 25 | 24 | baib | |- ( x e. RR -> ( x e. ( -oo (,) 0 ) <-> x < 0 ) ) |
| 26 | elrp | |- ( x e. RR+ <-> ( x e. RR /\ 0 < x ) ) |
|
| 27 | 26 | baib | |- ( x e. RR -> ( x e. RR+ <-> 0 < x ) ) |
| 28 | 25 27 | orbi12d | |- ( x e. RR -> ( ( x e. ( -oo (,) 0 ) \/ x e. RR+ ) <-> ( x < 0 \/ 0 < x ) ) ) |
| 29 | 18 28 | syl | |- ( ( ph /\ x e. ran ( RR _D F ) ) -> ( ( x e. ( -oo (,) 0 ) \/ x e. RR+ ) <-> ( x < 0 \/ 0 < x ) ) ) |
| 30 | 21 29 | bitr4d | |- ( ( ph /\ x e. ran ( RR _D F ) ) -> ( x =/= 0 <-> ( x e. ( -oo (,) 0 ) \/ x e. RR+ ) ) ) |
| 31 | 10 30 | mpbid | |- ( ( ph /\ x e. ran ( RR _D F ) ) -> ( x e. ( -oo (,) 0 ) \/ x e. RR+ ) ) |
| 32 | elun | |- ( x e. ( ( -oo (,) 0 ) u. RR+ ) <-> ( x e. ( -oo (,) 0 ) \/ x e. RR+ ) ) |
|
| 33 | 31 32 | sylibr | |- ( ( ph /\ x e. ran ( RR _D F ) ) -> x e. ( ( -oo (,) 0 ) u. RR+ ) ) |
| 34 | 33 | ex | |- ( ph -> ( x e. ran ( RR _D F ) -> x e. ( ( -oo (,) 0 ) u. RR+ ) ) ) |
| 35 | 34 | ssrdv | |- ( ph -> ran ( RR _D F ) C_ ( ( -oo (,) 0 ) u. RR+ ) ) |
| 36 | disjssun | |- ( ( ran ( RR _D F ) i^i ( -oo (,) 0 ) ) = (/) -> ( ran ( RR _D F ) C_ ( ( -oo (,) 0 ) u. RR+ ) <-> ran ( RR _D F ) C_ RR+ ) ) |
|
| 37 | 35 36 | syl5ibcom | |- ( ph -> ( ( ran ( RR _D F ) i^i ( -oo (,) 0 ) ) = (/) -> ran ( RR _D F ) C_ RR+ ) ) |
| 38 | 37 | imp | |- ( ( ph /\ ( ran ( RR _D F ) i^i ( -oo (,) 0 ) ) = (/) ) -> ran ( RR _D F ) C_ RR+ ) |
| 39 | 1 | adantr | |- ( ( ph /\ ran ( RR _D F ) C_ RR+ ) -> A e. RR ) |
| 40 | 2 | adantr | |- ( ( ph /\ ran ( RR _D F ) C_ RR+ ) -> B e. RR ) |
| 41 | 3 | adantr | |- ( ( ph /\ ran ( RR _D F ) C_ RR+ ) -> F e. ( ( A [,] B ) -cn-> RR ) ) |
| 42 | 4 | feq2d | |- ( ph -> ( ( RR _D F ) : dom ( RR _D F ) --> RR <-> ( RR _D F ) : ( A (,) B ) --> RR ) ) |
| 43 | 16 42 | mpbid | |- ( ph -> ( RR _D F ) : ( A (,) B ) --> RR ) |
| 44 | 43 | ffnd | |- ( ph -> ( RR _D F ) Fn ( A (,) B ) ) |
| 45 | 44 | anim1i | |- ( ( ph /\ ran ( RR _D F ) C_ RR+ ) -> ( ( RR _D F ) Fn ( A (,) B ) /\ ran ( RR _D F ) C_ RR+ ) ) |
| 46 | df-f | |- ( ( RR _D F ) : ( A (,) B ) --> RR+ <-> ( ( RR _D F ) Fn ( A (,) B ) /\ ran ( RR _D F ) C_ RR+ ) ) |
|
| 47 | 45 46 | sylibr | |- ( ( ph /\ ran ( RR _D F ) C_ RR+ ) -> ( RR _D F ) : ( A (,) B ) --> RR+ ) |
| 48 | 39 40 41 47 | dvgt0 | |- ( ( ph /\ ran ( RR _D F ) C_ RR+ ) -> F Isom < , < ( ( A [,] B ) , ran F ) ) |
| 49 | 48 | orcd | |- ( ( ph /\ ran ( RR _D F ) C_ RR+ ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) |
| 50 | 38 49 | syldan | |- ( ( ph /\ ( ran ( RR _D F ) i^i ( -oo (,) 0 ) ) = (/) ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) |
| 51 | n0 | |- ( ( ran ( RR _D F ) i^i ( -oo (,) 0 ) ) =/= (/) <-> E. x x e. ( ran ( RR _D F ) i^i ( -oo (,) 0 ) ) ) |
|
| 52 | elin | |- ( x e. ( ran ( RR _D F ) i^i ( -oo (,) 0 ) ) <-> ( x e. ran ( RR _D F ) /\ x e. ( -oo (,) 0 ) ) ) |
|
| 53 | fvelrnb | |- ( ( RR _D F ) Fn ( A (,) B ) -> ( x e. ran ( RR _D F ) <-> E. y e. ( A (,) B ) ( ( RR _D F ) ` y ) = x ) ) |
|
| 54 | 44 53 | syl | |- ( ph -> ( x e. ran ( RR _D F ) <-> E. y e. ( A (,) B ) ( ( RR _D F ) ` y ) = x ) ) |
| 55 | 1 | adantr | |- ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) -> A e. RR ) |
| 56 | 2 | adantr | |- ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) -> B e. RR ) |
| 57 | 3 | adantr | |- ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) -> F e. ( ( A [,] B ) -cn-> RR ) ) |
| 58 | 44 | adantr | |- ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) -> ( RR _D F ) Fn ( A (,) B ) ) |
| 59 | 43 | adantr | |- ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) -> ( RR _D F ) : ( A (,) B ) --> RR ) |
| 60 | 59 | ffvelcdmda | |- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ z e. ( A (,) B ) ) -> ( ( RR _D F ) ` z ) e. RR ) |
| 61 | 5 | ad2antrr | |- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ z e. ( A (,) B ) ) -> -. 0 e. ran ( RR _D F ) ) |
| 62 | simplrl | |- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> y e. ( A (,) B ) ) |
|
| 63 | simprl | |- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> z e. ( A (,) B ) ) |
|
| 64 | ioossicc | |- ( A (,) B ) C_ ( A [,] B ) |
|
| 65 | rescncf | |- ( ( A (,) B ) C_ ( A [,] B ) -> ( F e. ( ( A [,] B ) -cn-> RR ) -> ( F |` ( A (,) B ) ) e. ( ( A (,) B ) -cn-> RR ) ) ) |
|
| 66 | 64 3 65 | mpsyl | |- ( ph -> ( F |` ( A (,) B ) ) e. ( ( A (,) B ) -cn-> RR ) ) |
| 67 | 66 | ad2antrr | |- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( F |` ( A (,) B ) ) e. ( ( A (,) B ) -cn-> RR ) ) |
| 68 | ax-resscn | |- RR C_ CC |
|
| 69 | 68 | a1i | |- ( ph -> RR C_ CC ) |
| 70 | fss | |- ( ( F : ( A [,] B ) --> RR /\ RR C_ CC ) -> F : ( A [,] B ) --> CC ) |
|
| 71 | 12 68 70 | sylancl | |- ( ph -> F : ( A [,] B ) --> CC ) |
| 72 | 64 14 | sstrid | |- ( ph -> ( A (,) B ) C_ RR ) |
| 73 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 74 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 75 | 73 74 | dvres | |- ( ( ( RR C_ CC /\ F : ( A [,] B ) --> CC ) /\ ( ( A [,] B ) C_ RR /\ ( A (,) B ) C_ RR ) ) -> ( RR _D ( F |` ( A (,) B ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) ) ) |
| 76 | 69 71 14 72 75 | syl22anc | |- ( ph -> ( RR _D ( F |` ( A (,) B ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) ) ) |
| 77 | retop | |- ( topGen ` ran (,) ) e. Top |
|
| 78 | iooretop | |- ( A (,) B ) e. ( topGen ` ran (,) ) |
|
| 79 | isopn3i | |- ( ( ( topGen ` ran (,) ) e. Top /\ ( A (,) B ) e. ( topGen ` ran (,) ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) = ( A (,) B ) ) |
|
| 80 | 77 78 79 | mp2an | |- ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) = ( A (,) B ) |
| 81 | 80 | reseq2i | |- ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) ) = ( ( RR _D F ) |` ( A (,) B ) ) |
| 82 | fnresdm | |- ( ( RR _D F ) Fn ( A (,) B ) -> ( ( RR _D F ) |` ( A (,) B ) ) = ( RR _D F ) ) |
|
| 83 | 44 82 | syl | |- ( ph -> ( ( RR _D F ) |` ( A (,) B ) ) = ( RR _D F ) ) |
| 84 | 81 83 | eqtrid | |- ( ph -> ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) ) = ( RR _D F ) ) |
| 85 | 76 84 | eqtrd | |- ( ph -> ( RR _D ( F |` ( A (,) B ) ) ) = ( RR _D F ) ) |
| 86 | 85 | dmeqd | |- ( ph -> dom ( RR _D ( F |` ( A (,) B ) ) ) = dom ( RR _D F ) ) |
| 87 | 86 4 | eqtrd | |- ( ph -> dom ( RR _D ( F |` ( A (,) B ) ) ) = ( A (,) B ) ) |
| 88 | 87 | ad2antrr | |- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> dom ( RR _D ( F |` ( A (,) B ) ) ) = ( A (,) B ) ) |
| 89 | 62 63 67 88 | dvivth | |- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( ( ( RR _D ( F |` ( A (,) B ) ) ) ` y ) [,] ( ( RR _D ( F |` ( A (,) B ) ) ) ` z ) ) C_ ran ( RR _D ( F |` ( A (,) B ) ) ) ) |
| 90 | 85 | ad2antrr | |- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( RR _D ( F |` ( A (,) B ) ) ) = ( RR _D F ) ) |
| 91 | 90 | fveq1d | |- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( ( RR _D ( F |` ( A (,) B ) ) ) ` y ) = ( ( RR _D F ) ` y ) ) |
| 92 | 90 | fveq1d | |- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( ( RR _D ( F |` ( A (,) B ) ) ) ` z ) = ( ( RR _D F ) ` z ) ) |
| 93 | 91 92 | oveq12d | |- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( ( ( RR _D ( F |` ( A (,) B ) ) ) ` y ) [,] ( ( RR _D ( F |` ( A (,) B ) ) ) ` z ) ) = ( ( ( RR _D F ) ` y ) [,] ( ( RR _D F ) ` z ) ) ) |
| 94 | 90 | rneqd | |- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ran ( RR _D ( F |` ( A (,) B ) ) ) = ran ( RR _D F ) ) |
| 95 | 89 93 94 | 3sstr3d | |- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( ( ( RR _D F ) ` y ) [,] ( ( RR _D F ) ` z ) ) C_ ran ( RR _D F ) ) |
| 96 | 19 | a1i | |- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> 0 e. RR ) |
| 97 | simplrr | |- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) |
|
| 98 | elioomnf | |- ( 0 e. RR* -> ( ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) <-> ( ( ( RR _D F ) ` y ) e. RR /\ ( ( RR _D F ) ` y ) < 0 ) ) ) |
|
| 99 | 22 98 | ax-mp | |- ( ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) <-> ( ( ( RR _D F ) ` y ) e. RR /\ ( ( RR _D F ) ` y ) < 0 ) ) |
| 100 | 97 99 | sylib | |- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( ( ( RR _D F ) ` y ) e. RR /\ ( ( RR _D F ) ` y ) < 0 ) ) |
| 101 | 100 | simprd | |- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( ( RR _D F ) ` y ) < 0 ) |
| 102 | 100 | simpld | |- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( ( RR _D F ) ` y ) e. RR ) |
| 103 | ltle | |- ( ( ( ( RR _D F ) ` y ) e. RR /\ 0 e. RR ) -> ( ( ( RR _D F ) ` y ) < 0 -> ( ( RR _D F ) ` y ) <_ 0 ) ) |
|
| 104 | 102 19 103 | sylancl | |- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( ( ( RR _D F ) ` y ) < 0 -> ( ( RR _D F ) ` y ) <_ 0 ) ) |
| 105 | 101 104 | mpd | |- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( ( RR _D F ) ` y ) <_ 0 ) |
| 106 | simprr | |- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> 0 <_ ( ( RR _D F ) ` z ) ) |
|
| 107 | 63 60 | syldan | |- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( ( RR _D F ) ` z ) e. RR ) |
| 108 | elicc2 | |- ( ( ( ( RR _D F ) ` y ) e. RR /\ ( ( RR _D F ) ` z ) e. RR ) -> ( 0 e. ( ( ( RR _D F ) ` y ) [,] ( ( RR _D F ) ` z ) ) <-> ( 0 e. RR /\ ( ( RR _D F ) ` y ) <_ 0 /\ 0 <_ ( ( RR _D F ) ` z ) ) ) ) |
|
| 109 | 102 107 108 | syl2anc | |- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> ( 0 e. ( ( ( RR _D F ) ` y ) [,] ( ( RR _D F ) ` z ) ) <-> ( 0 e. RR /\ ( ( RR _D F ) ` y ) <_ 0 /\ 0 <_ ( ( RR _D F ) ` z ) ) ) ) |
| 110 | 96 105 106 109 | mpbir3and | |- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> 0 e. ( ( ( RR _D F ) ` y ) [,] ( ( RR _D F ) ` z ) ) ) |
| 111 | 95 110 | sseldd | |- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ ( z e. ( A (,) B ) /\ 0 <_ ( ( RR _D F ) ` z ) ) ) -> 0 e. ran ( RR _D F ) ) |
| 112 | 111 | expr | |- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ z e. ( A (,) B ) ) -> ( 0 <_ ( ( RR _D F ) ` z ) -> 0 e. ran ( RR _D F ) ) ) |
| 113 | 61 112 | mtod | |- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ z e. ( A (,) B ) ) -> -. 0 <_ ( ( RR _D F ) ` z ) ) |
| 114 | ltnle | |- ( ( ( ( RR _D F ) ` z ) e. RR /\ 0 e. RR ) -> ( ( ( RR _D F ) ` z ) < 0 <-> -. 0 <_ ( ( RR _D F ) ` z ) ) ) |
|
| 115 | 60 19 114 | sylancl | |- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ z e. ( A (,) B ) ) -> ( ( ( RR _D F ) ` z ) < 0 <-> -. 0 <_ ( ( RR _D F ) ` z ) ) ) |
| 116 | 113 115 | mpbird | |- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ z e. ( A (,) B ) ) -> ( ( RR _D F ) ` z ) < 0 ) |
| 117 | elioomnf | |- ( 0 e. RR* -> ( ( ( RR _D F ) ` z ) e. ( -oo (,) 0 ) <-> ( ( ( RR _D F ) ` z ) e. RR /\ ( ( RR _D F ) ` z ) < 0 ) ) ) |
|
| 118 | 22 117 | ax-mp | |- ( ( ( RR _D F ) ` z ) e. ( -oo (,) 0 ) <-> ( ( ( RR _D F ) ` z ) e. RR /\ ( ( RR _D F ) ` z ) < 0 ) ) |
| 119 | 60 116 118 | sylanbrc | |- ( ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) /\ z e. ( A (,) B ) ) -> ( ( RR _D F ) ` z ) e. ( -oo (,) 0 ) ) |
| 120 | 119 | ralrimiva | |- ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) -> A. z e. ( A (,) B ) ( ( RR _D F ) ` z ) e. ( -oo (,) 0 ) ) |
| 121 | ffnfv | |- ( ( RR _D F ) : ( A (,) B ) --> ( -oo (,) 0 ) <-> ( ( RR _D F ) Fn ( A (,) B ) /\ A. z e. ( A (,) B ) ( ( RR _D F ) ` z ) e. ( -oo (,) 0 ) ) ) |
|
| 122 | 58 120 121 | sylanbrc | |- ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) -> ( RR _D F ) : ( A (,) B ) --> ( -oo (,) 0 ) ) |
| 123 | 55 56 57 122 | dvlt0 | |- ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) -> F Isom < , `' < ( ( A [,] B ) , ran F ) ) |
| 124 | 123 | olcd | |- ( ( ph /\ ( y e. ( A (,) B ) /\ ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) ) ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) |
| 125 | 124 | expr | |- ( ( ph /\ y e. ( A (,) B ) ) -> ( ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) ) |
| 126 | eleq1 | |- ( ( ( RR _D F ) ` y ) = x -> ( ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) <-> x e. ( -oo (,) 0 ) ) ) |
|
| 127 | 126 | imbi1d | |- ( ( ( RR _D F ) ` y ) = x -> ( ( ( ( RR _D F ) ` y ) e. ( -oo (,) 0 ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) <-> ( x e. ( -oo (,) 0 ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) ) ) |
| 128 | 125 127 | syl5ibcom | |- ( ( ph /\ y e. ( A (,) B ) ) -> ( ( ( RR _D F ) ` y ) = x -> ( x e. ( -oo (,) 0 ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) ) ) |
| 129 | 128 | rexlimdva | |- ( ph -> ( E. y e. ( A (,) B ) ( ( RR _D F ) ` y ) = x -> ( x e. ( -oo (,) 0 ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) ) ) |
| 130 | 54 129 | sylbid | |- ( ph -> ( x e. ran ( RR _D F ) -> ( x e. ( -oo (,) 0 ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) ) ) |
| 131 | 130 | impd | |- ( ph -> ( ( x e. ran ( RR _D F ) /\ x e. ( -oo (,) 0 ) ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) ) |
| 132 | 52 131 | biimtrid | |- ( ph -> ( x e. ( ran ( RR _D F ) i^i ( -oo (,) 0 ) ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) ) |
| 133 | 132 | exlimdv | |- ( ph -> ( E. x x e. ( ran ( RR _D F ) i^i ( -oo (,) 0 ) ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) ) |
| 134 | 51 133 | biimtrid | |- ( ph -> ( ( ran ( RR _D F ) i^i ( -oo (,) 0 ) ) =/= (/) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) ) |
| 135 | 134 | imp | |- ( ( ph /\ ( ran ( RR _D F ) i^i ( -oo (,) 0 ) ) =/= (/) ) -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) |
| 136 | 50 135 | pm2.61dane | |- ( ph -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) |