This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function on a closed interval with positive derivative is increasing. (Contributed by Mario Carneiro, 19-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvgt0.a | |- ( ph -> A e. RR ) |
|
| dvgt0.b | |- ( ph -> B e. RR ) |
||
| dvgt0.f | |- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
||
| dvgt0.d | |- ( ph -> ( RR _D F ) : ( A (,) B ) --> RR+ ) |
||
| Assertion | dvgt0 | |- ( ph -> F Isom < , < ( ( A [,] B ) , ran F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvgt0.a | |- ( ph -> A e. RR ) |
|
| 2 | dvgt0.b | |- ( ph -> B e. RR ) |
|
| 3 | dvgt0.f | |- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
|
| 4 | dvgt0.d | |- ( ph -> ( RR _D F ) : ( A (,) B ) --> RR+ ) |
|
| 5 | ltso | |- < Or RR |
|
| 6 | 1 2 3 4 | dvgt0lem1 | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) e. RR+ ) |
| 7 | 6 | rpgt0d | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> 0 < ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) |
| 8 | cncff | |- ( F e. ( ( A [,] B ) -cn-> RR ) -> F : ( A [,] B ) --> RR ) |
|
| 9 | 3 8 | syl | |- ( ph -> F : ( A [,] B ) --> RR ) |
| 10 | 9 | ad2antrr | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> F : ( A [,] B ) --> RR ) |
| 11 | simplrr | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> y e. ( A [,] B ) ) |
|
| 12 | 10 11 | ffvelcdmd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( F ` y ) e. RR ) |
| 13 | simplrl | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> x e. ( A [,] B ) ) |
|
| 14 | 10 13 | ffvelcdmd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( F ` x ) e. RR ) |
| 15 | 12 14 | resubcld | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F ` y ) - ( F ` x ) ) e. RR ) |
| 16 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 17 | 1 2 16 | syl2anc | |- ( ph -> ( A [,] B ) C_ RR ) |
| 18 | 17 | ad2antrr | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( A [,] B ) C_ RR ) |
| 19 | 18 11 | sseldd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> y e. RR ) |
| 20 | 18 13 | sseldd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> x e. RR ) |
| 21 | 19 20 | resubcld | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( y - x ) e. RR ) |
| 22 | simpr | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> x < y ) |
|
| 23 | 20 19 | posdifd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( x < y <-> 0 < ( y - x ) ) ) |
| 24 | 22 23 | mpbid | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> 0 < ( y - x ) ) |
| 25 | gt0div | |- ( ( ( ( F ` y ) - ( F ` x ) ) e. RR /\ ( y - x ) e. RR /\ 0 < ( y - x ) ) -> ( 0 < ( ( F ` y ) - ( F ` x ) ) <-> 0 < ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ) |
|
| 26 | 15 21 24 25 | syl3anc | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( 0 < ( ( F ` y ) - ( F ` x ) ) <-> 0 < ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ) |
| 27 | 7 26 | mpbird | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> 0 < ( ( F ` y ) - ( F ` x ) ) ) |
| 28 | 14 12 | posdifd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F ` x ) < ( F ` y ) <-> 0 < ( ( F ` y ) - ( F ` x ) ) ) ) |
| 29 | 27 28 | mpbird | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( F ` x ) < ( F ` y ) ) |
| 30 | 1 2 3 4 5 29 | dvgt0lem2 | |- ( ph -> F Isom < , < ( ( A [,] B ) , ran F ) ) |