This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset relation for disjoint classes. (Contributed by NM, 25-Oct-2005) (Proof shortened by Andrew Salmon, 26-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjssun | |- ( ( A i^i B ) = (/) -> ( A C_ ( B u. C ) <-> A C_ C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq2 | |- ( ( A i^i B ) = (/) -> ( ( A i^i C ) u. ( A i^i B ) ) = ( ( A i^i C ) u. (/) ) ) |
|
| 2 | indi | |- ( A i^i ( B u. C ) ) = ( ( A i^i B ) u. ( A i^i C ) ) |
|
| 3 | 2 | equncomi | |- ( A i^i ( B u. C ) ) = ( ( A i^i C ) u. ( A i^i B ) ) |
| 4 | un0 | |- ( ( A i^i C ) u. (/) ) = ( A i^i C ) |
|
| 5 | 4 | eqcomi | |- ( A i^i C ) = ( ( A i^i C ) u. (/) ) |
| 6 | 1 3 5 | 3eqtr4g | |- ( ( A i^i B ) = (/) -> ( A i^i ( B u. C ) ) = ( A i^i C ) ) |
| 7 | 6 | eqeq1d | |- ( ( A i^i B ) = (/) -> ( ( A i^i ( B u. C ) ) = A <-> ( A i^i C ) = A ) ) |
| 8 | dfss2 | |- ( A C_ ( B u. C ) <-> ( A i^i ( B u. C ) ) = A ) |
|
| 9 | dfss2 | |- ( A C_ C <-> ( A i^i C ) = A ) |
|
| 10 | 7 8 9 | 3bitr4g | |- ( ( A i^i B ) = (/) -> ( A C_ ( B u. C ) <-> A C_ C ) ) |