This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Darboux' theorem, or the intermediate value theorem for derivatives. A differentiable function's derivative satisfies the intermediate value property, even though it may not be continuous (so that ivthicc does not directly apply). (Contributed by Mario Carneiro, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvivth.1 | |- ( ph -> M e. ( A (,) B ) ) |
|
| dvivth.2 | |- ( ph -> N e. ( A (,) B ) ) |
||
| dvivth.3 | |- ( ph -> F e. ( ( A (,) B ) -cn-> RR ) ) |
||
| dvivth.4 | |- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
||
| Assertion | dvivth | |- ( ph -> ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) C_ ran ( RR _D F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvivth.1 | |- ( ph -> M e. ( A (,) B ) ) |
|
| 2 | dvivth.2 | |- ( ph -> N e. ( A (,) B ) ) |
|
| 3 | dvivth.3 | |- ( ph -> F e. ( ( A (,) B ) -cn-> RR ) ) |
|
| 4 | dvivth.4 | |- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
|
| 5 | 1 | adantr | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> M e. ( A (,) B ) ) |
| 6 | 2 | adantr | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> N e. ( A (,) B ) ) |
| 7 | cncff | |- ( F e. ( ( A (,) B ) -cn-> RR ) -> F : ( A (,) B ) --> RR ) |
|
| 8 | 3 7 | syl | |- ( ph -> F : ( A (,) B ) --> RR ) |
| 9 | 8 | ffvelcdmda | |- ( ( ph /\ w e. ( A (,) B ) ) -> ( F ` w ) e. RR ) |
| 10 | 9 | renegcld | |- ( ( ph /\ w e. ( A (,) B ) ) -> -u ( F ` w ) e. RR ) |
| 11 | 10 | fmpttd | |- ( ph -> ( w e. ( A (,) B ) |-> -u ( F ` w ) ) : ( A (,) B ) --> RR ) |
| 12 | ax-resscn | |- RR C_ CC |
|
| 13 | ssid | |- CC C_ CC |
|
| 14 | cncfss | |- ( ( RR C_ CC /\ CC C_ CC ) -> ( ( A (,) B ) -cn-> RR ) C_ ( ( A (,) B ) -cn-> CC ) ) |
|
| 15 | 12 13 14 | mp2an | |- ( ( A (,) B ) -cn-> RR ) C_ ( ( A (,) B ) -cn-> CC ) |
| 16 | 15 3 | sselid | |- ( ph -> F e. ( ( A (,) B ) -cn-> CC ) ) |
| 17 | eqid | |- ( w e. ( A (,) B ) |-> -u ( F ` w ) ) = ( w e. ( A (,) B ) |-> -u ( F ` w ) ) |
|
| 18 | 17 | negfcncf | |- ( F e. ( ( A (,) B ) -cn-> CC ) -> ( w e. ( A (,) B ) |-> -u ( F ` w ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
| 19 | 16 18 | syl | |- ( ph -> ( w e. ( A (,) B ) |-> -u ( F ` w ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
| 20 | cncfcdm | |- ( ( RR C_ CC /\ ( w e. ( A (,) B ) |-> -u ( F ` w ) ) e. ( ( A (,) B ) -cn-> CC ) ) -> ( ( w e. ( A (,) B ) |-> -u ( F ` w ) ) e. ( ( A (,) B ) -cn-> RR ) <-> ( w e. ( A (,) B ) |-> -u ( F ` w ) ) : ( A (,) B ) --> RR ) ) |
|
| 21 | 12 19 20 | sylancr | |- ( ph -> ( ( w e. ( A (,) B ) |-> -u ( F ` w ) ) e. ( ( A (,) B ) -cn-> RR ) <-> ( w e. ( A (,) B ) |-> -u ( F ` w ) ) : ( A (,) B ) --> RR ) ) |
| 22 | 11 21 | mpbird | |- ( ph -> ( w e. ( A (,) B ) |-> -u ( F ` w ) ) e. ( ( A (,) B ) -cn-> RR ) ) |
| 23 | 22 | adantr | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( w e. ( A (,) B ) |-> -u ( F ` w ) ) e. ( ( A (,) B ) -cn-> RR ) ) |
| 24 | reelprrecn | |- RR e. { RR , CC } |
|
| 25 | 24 | a1i | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> RR e. { RR , CC } ) |
| 26 | 8 | adantr | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> F : ( A (,) B ) --> RR ) |
| 27 | 26 | ffvelcdmda | |- ( ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) /\ w e. ( A (,) B ) ) -> ( F ` w ) e. RR ) |
| 28 | 27 | recnd | |- ( ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) /\ w e. ( A (,) B ) ) -> ( F ` w ) e. CC ) |
| 29 | fvexd | |- ( ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) /\ w e. ( A (,) B ) ) -> ( ( RR _D F ) ` w ) e. _V ) |
|
| 30 | 26 | feqmptd | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> F = ( w e. ( A (,) B ) |-> ( F ` w ) ) ) |
| 31 | 30 | oveq2d | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( RR _D F ) = ( RR _D ( w e. ( A (,) B ) |-> ( F ` w ) ) ) ) |
| 32 | ioossre | |- ( A (,) B ) C_ RR |
|
| 33 | dvfre | |- ( ( F : ( A (,) B ) --> RR /\ ( A (,) B ) C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
|
| 34 | 8 32 33 | sylancl | |- ( ph -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
| 35 | 4 | feq2d | |- ( ph -> ( ( RR _D F ) : dom ( RR _D F ) --> RR <-> ( RR _D F ) : ( A (,) B ) --> RR ) ) |
| 36 | 34 35 | mpbid | |- ( ph -> ( RR _D F ) : ( A (,) B ) --> RR ) |
| 37 | 36 | adantr | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( RR _D F ) : ( A (,) B ) --> RR ) |
| 38 | 37 | feqmptd | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( RR _D F ) = ( w e. ( A (,) B ) |-> ( ( RR _D F ) ` w ) ) ) |
| 39 | 31 38 | eqtr3d | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( RR _D ( w e. ( A (,) B ) |-> ( F ` w ) ) ) = ( w e. ( A (,) B ) |-> ( ( RR _D F ) ` w ) ) ) |
| 40 | 25 28 29 39 | dvmptneg | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) = ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) ) |
| 41 | 40 | dmeqd | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> dom ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) = dom ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) ) |
| 42 | dmmptg | |- ( A. w e. ( A (,) B ) -u ( ( RR _D F ) ` w ) e. _V -> dom ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) = ( A (,) B ) ) |
|
| 43 | negex | |- -u ( ( RR _D F ) ` w ) e. _V |
|
| 44 | 43 | a1i | |- ( w e. ( A (,) B ) -> -u ( ( RR _D F ) ` w ) e. _V ) |
| 45 | 42 44 | mprg | |- dom ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) = ( A (,) B ) |
| 46 | 41 45 | eqtrdi | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> dom ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) = ( A (,) B ) ) |
| 47 | simprl | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> M < N ) |
|
| 48 | simprr | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) |
|
| 49 | 36 1 | ffvelcdmd | |- ( ph -> ( ( RR _D F ) ` M ) e. RR ) |
| 50 | 49 | adantr | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( ( RR _D F ) ` M ) e. RR ) |
| 51 | 2 4 | eleqtrrd | |- ( ph -> N e. dom ( RR _D F ) ) |
| 52 | 34 51 | ffvelcdmd | |- ( ph -> ( ( RR _D F ) ` N ) e. RR ) |
| 53 | 52 | adantr | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( ( RR _D F ) ` N ) e. RR ) |
| 54 | iccssre | |- ( ( ( ( RR _D F ) ` M ) e. RR /\ ( ( RR _D F ) ` N ) e. RR ) -> ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) C_ RR ) |
|
| 55 | 49 52 54 | syl2anc | |- ( ph -> ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) C_ RR ) |
| 56 | 55 | adantr | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) C_ RR ) |
| 57 | 56 48 | sseldd | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> x e. RR ) |
| 58 | iccneg | |- ( ( ( ( RR _D F ) ` M ) e. RR /\ ( ( RR _D F ) ` N ) e. RR /\ x e. RR ) -> ( x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) <-> -u x e. ( -u ( ( RR _D F ) ` N ) [,] -u ( ( RR _D F ) ` M ) ) ) ) |
|
| 59 | 50 53 57 58 | syl3anc | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) <-> -u x e. ( -u ( ( RR _D F ) ` N ) [,] -u ( ( RR _D F ) ` M ) ) ) ) |
| 60 | 48 59 | mpbid | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> -u x e. ( -u ( ( RR _D F ) ` N ) [,] -u ( ( RR _D F ) ` M ) ) ) |
| 61 | 40 | fveq1d | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) ` N ) = ( ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) ` N ) ) |
| 62 | fveq2 | |- ( w = N -> ( ( RR _D F ) ` w ) = ( ( RR _D F ) ` N ) ) |
|
| 63 | 62 | negeqd | |- ( w = N -> -u ( ( RR _D F ) ` w ) = -u ( ( RR _D F ) ` N ) ) |
| 64 | eqid | |- ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) = ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) |
|
| 65 | negex | |- -u ( ( RR _D F ) ` N ) e. _V |
|
| 66 | 63 64 65 | fvmpt | |- ( N e. ( A (,) B ) -> ( ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) ` N ) = -u ( ( RR _D F ) ` N ) ) |
| 67 | 6 66 | syl | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) ` N ) = -u ( ( RR _D F ) ` N ) ) |
| 68 | 61 67 | eqtrd | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) ` N ) = -u ( ( RR _D F ) ` N ) ) |
| 69 | 40 | fveq1d | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) ` M ) = ( ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) ` M ) ) |
| 70 | fveq2 | |- ( w = M -> ( ( RR _D F ) ` w ) = ( ( RR _D F ) ` M ) ) |
|
| 71 | 70 | negeqd | |- ( w = M -> -u ( ( RR _D F ) ` w ) = -u ( ( RR _D F ) ` M ) ) |
| 72 | negex | |- -u ( ( RR _D F ) ` M ) e. _V |
|
| 73 | 71 64 72 | fvmpt | |- ( M e. ( A (,) B ) -> ( ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) ` M ) = -u ( ( RR _D F ) ` M ) ) |
| 74 | 5 73 | syl | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) ` M ) = -u ( ( RR _D F ) ` M ) ) |
| 75 | 69 74 | eqtrd | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) ` M ) = -u ( ( RR _D F ) ` M ) ) |
| 76 | 68 75 | oveq12d | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( ( ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) ` N ) [,] ( ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) ` M ) ) = ( -u ( ( RR _D F ) ` N ) [,] -u ( ( RR _D F ) ` M ) ) ) |
| 77 | 60 76 | eleqtrrd | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> -u x e. ( ( ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) ` N ) [,] ( ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) ` M ) ) ) |
| 78 | eqid | |- ( y e. ( A (,) B ) |-> ( ( ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ` y ) - ( -u x x. y ) ) ) = ( y e. ( A (,) B ) |-> ( ( ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ` y ) - ( -u x x. y ) ) ) |
|
| 79 | 5 6 23 46 47 77 78 | dvivthlem2 | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> -u x e. ran ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) ) |
| 80 | 40 | rneqd | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ran ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) = ran ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) ) |
| 81 | 79 80 | eleqtrd | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> -u x e. ran ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) ) |
| 82 | negex | |- -u x e. _V |
|
| 83 | 64 | elrnmpt | |- ( -u x e. _V -> ( -u x e. ran ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) <-> E. w e. ( A (,) B ) -u x = -u ( ( RR _D F ) ` w ) ) ) |
| 84 | 82 83 | ax-mp | |- ( -u x e. ran ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) <-> E. w e. ( A (,) B ) -u x = -u ( ( RR _D F ) ` w ) ) |
| 85 | 81 84 | sylib | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> E. w e. ( A (,) B ) -u x = -u ( ( RR _D F ) ` w ) ) |
| 86 | 57 | recnd | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> x e. CC ) |
| 87 | 86 | adantr | |- ( ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) /\ w e. ( A (,) B ) ) -> x e. CC ) |
| 88 | 25 28 29 39 | dvmptcl | |- ( ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) /\ w e. ( A (,) B ) ) -> ( ( RR _D F ) ` w ) e. CC ) |
| 89 | 87 88 | neg11ad | |- ( ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) /\ w e. ( A (,) B ) ) -> ( -u x = -u ( ( RR _D F ) ` w ) <-> x = ( ( RR _D F ) ` w ) ) ) |
| 90 | eqcom | |- ( x = ( ( RR _D F ) ` w ) <-> ( ( RR _D F ) ` w ) = x ) |
|
| 91 | 89 90 | bitrdi | |- ( ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) /\ w e. ( A (,) B ) ) -> ( -u x = -u ( ( RR _D F ) ` w ) <-> ( ( RR _D F ) ` w ) = x ) ) |
| 92 | 91 | rexbidva | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( E. w e. ( A (,) B ) -u x = -u ( ( RR _D F ) ` w ) <-> E. w e. ( A (,) B ) ( ( RR _D F ) ` w ) = x ) ) |
| 93 | 85 92 | mpbid | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> E. w e. ( A (,) B ) ( ( RR _D F ) ` w ) = x ) |
| 94 | 37 | ffnd | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( RR _D F ) Fn ( A (,) B ) ) |
| 95 | fvelrnb | |- ( ( RR _D F ) Fn ( A (,) B ) -> ( x e. ran ( RR _D F ) <-> E. w e. ( A (,) B ) ( ( RR _D F ) ` w ) = x ) ) |
|
| 96 | 94 95 | syl | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( x e. ran ( RR _D F ) <-> E. w e. ( A (,) B ) ( ( RR _D F ) ` w ) = x ) ) |
| 97 | 93 96 | mpbird | |- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> x e. ran ( RR _D F ) ) |
| 98 | 97 | expr | |- ( ( ph /\ M < N ) -> ( x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) -> x e. ran ( RR _D F ) ) ) |
| 99 | 98 | ssrdv | |- ( ( ph /\ M < N ) -> ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) C_ ran ( RR _D F ) ) |
| 100 | fveq2 | |- ( M = N -> ( ( RR _D F ) ` M ) = ( ( RR _D F ) ` N ) ) |
|
| 101 | 100 | oveq1d | |- ( M = N -> ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) = ( ( ( RR _D F ) ` N ) [,] ( ( RR _D F ) ` N ) ) ) |
| 102 | 52 | rexrd | |- ( ph -> ( ( RR _D F ) ` N ) e. RR* ) |
| 103 | iccid | |- ( ( ( RR _D F ) ` N ) e. RR* -> ( ( ( RR _D F ) ` N ) [,] ( ( RR _D F ) ` N ) ) = { ( ( RR _D F ) ` N ) } ) |
|
| 104 | 102 103 | syl | |- ( ph -> ( ( ( RR _D F ) ` N ) [,] ( ( RR _D F ) ` N ) ) = { ( ( RR _D F ) ` N ) } ) |
| 105 | 101 104 | sylan9eqr | |- ( ( ph /\ M = N ) -> ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) = { ( ( RR _D F ) ` N ) } ) |
| 106 | 34 | ffnd | |- ( ph -> ( RR _D F ) Fn dom ( RR _D F ) ) |
| 107 | fnfvelrn | |- ( ( ( RR _D F ) Fn dom ( RR _D F ) /\ N e. dom ( RR _D F ) ) -> ( ( RR _D F ) ` N ) e. ran ( RR _D F ) ) |
|
| 108 | 106 51 107 | syl2anc | |- ( ph -> ( ( RR _D F ) ` N ) e. ran ( RR _D F ) ) |
| 109 | 108 | snssd | |- ( ph -> { ( ( RR _D F ) ` N ) } C_ ran ( RR _D F ) ) |
| 110 | 109 | adantr | |- ( ( ph /\ M = N ) -> { ( ( RR _D F ) ` N ) } C_ ran ( RR _D F ) ) |
| 111 | 105 110 | eqsstrd | |- ( ( ph /\ M = N ) -> ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) C_ ran ( RR _D F ) ) |
| 112 | 2 | adantr | |- ( ( ph /\ ( N < M /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> N e. ( A (,) B ) ) |
| 113 | 1 | adantr | |- ( ( ph /\ ( N < M /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> M e. ( A (,) B ) ) |
| 114 | 3 | adantr | |- ( ( ph /\ ( N < M /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> F e. ( ( A (,) B ) -cn-> RR ) ) |
| 115 | 4 | adantr | |- ( ( ph /\ ( N < M /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> dom ( RR _D F ) = ( A (,) B ) ) |
| 116 | simprl | |- ( ( ph /\ ( N < M /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> N < M ) |
|
| 117 | simprr | |- ( ( ph /\ ( N < M /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) |
|
| 118 | eqid | |- ( y e. ( A (,) B ) |-> ( ( F ` y ) - ( x x. y ) ) ) = ( y e. ( A (,) B ) |-> ( ( F ` y ) - ( x x. y ) ) ) |
|
| 119 | 112 113 114 115 116 117 118 | dvivthlem2 | |- ( ( ph /\ ( N < M /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> x e. ran ( RR _D F ) ) |
| 120 | 119 | expr | |- ( ( ph /\ N < M ) -> ( x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) -> x e. ran ( RR _D F ) ) ) |
| 121 | 120 | ssrdv | |- ( ( ph /\ N < M ) -> ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) C_ ran ( RR _D F ) ) |
| 122 | 32 1 | sselid | |- ( ph -> M e. RR ) |
| 123 | 32 2 | sselid | |- ( ph -> N e. RR ) |
| 124 | 122 123 | lttri4d | |- ( ph -> ( M < N \/ M = N \/ N < M ) ) |
| 125 | 99 111 121 124 | mpjao3dan | |- ( ph -> ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) C_ ran ( RR _D F ) ) |