This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function on a closed interval with negative derivative is decreasing. (Contributed by Mario Carneiro, 19-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvgt0.a | |- ( ph -> A e. RR ) |
|
| dvgt0.b | |- ( ph -> B e. RR ) |
||
| dvgt0.f | |- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
||
| dvlt0.d | |- ( ph -> ( RR _D F ) : ( A (,) B ) --> ( -oo (,) 0 ) ) |
||
| Assertion | dvlt0 | |- ( ph -> F Isom < , `' < ( ( A [,] B ) , ran F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvgt0.a | |- ( ph -> A e. RR ) |
|
| 2 | dvgt0.b | |- ( ph -> B e. RR ) |
|
| 3 | dvgt0.f | |- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
|
| 4 | dvlt0.d | |- ( ph -> ( RR _D F ) : ( A (,) B ) --> ( -oo (,) 0 ) ) |
|
| 5 | gtso | |- `' < Or RR |
|
| 6 | 1 2 3 4 | dvgt0lem1 | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) e. ( -oo (,) 0 ) ) |
| 7 | eliooord | |- ( ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) e. ( -oo (,) 0 ) -> ( -oo < ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) /\ ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) < 0 ) ) |
|
| 8 | 6 7 | syl | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( -oo < ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) /\ ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) < 0 ) ) |
| 9 | 8 | simprd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) < 0 ) |
| 10 | cncff | |- ( F e. ( ( A [,] B ) -cn-> RR ) -> F : ( A [,] B ) --> RR ) |
|
| 11 | 3 10 | syl | |- ( ph -> F : ( A [,] B ) --> RR ) |
| 12 | 11 | ad2antrr | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> F : ( A [,] B ) --> RR ) |
| 13 | simplrr | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> y e. ( A [,] B ) ) |
|
| 14 | 12 13 | ffvelcdmd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( F ` y ) e. RR ) |
| 15 | simplrl | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> x e. ( A [,] B ) ) |
|
| 16 | 12 15 | ffvelcdmd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( F ` x ) e. RR ) |
| 17 | 14 16 | resubcld | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F ` y ) - ( F ` x ) ) e. RR ) |
| 18 | 0red | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> 0 e. RR ) |
|
| 19 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 20 | 1 2 19 | syl2anc | |- ( ph -> ( A [,] B ) C_ RR ) |
| 21 | 20 | ad2antrr | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( A [,] B ) C_ RR ) |
| 22 | 21 13 | sseldd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> y e. RR ) |
| 23 | 21 15 | sseldd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> x e. RR ) |
| 24 | 22 23 | resubcld | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( y - x ) e. RR ) |
| 25 | simpr | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> x < y ) |
|
| 26 | 23 22 | posdifd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( x < y <-> 0 < ( y - x ) ) ) |
| 27 | 25 26 | mpbid | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> 0 < ( y - x ) ) |
| 28 | ltdivmul | |- ( ( ( ( F ` y ) - ( F ` x ) ) e. RR /\ 0 e. RR /\ ( ( y - x ) e. RR /\ 0 < ( y - x ) ) ) -> ( ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) < 0 <-> ( ( F ` y ) - ( F ` x ) ) < ( ( y - x ) x. 0 ) ) ) |
|
| 29 | 17 18 24 27 28 | syl112anc | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) < 0 <-> ( ( F ` y ) - ( F ` x ) ) < ( ( y - x ) x. 0 ) ) ) |
| 30 | 9 29 | mpbid | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F ` y ) - ( F ` x ) ) < ( ( y - x ) x. 0 ) ) |
| 31 | 24 | recnd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( y - x ) e. CC ) |
| 32 | 31 | mul01d | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( y - x ) x. 0 ) = 0 ) |
| 33 | 30 32 | breqtrd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F ` y ) - ( F ` x ) ) < 0 ) |
| 34 | 14 16 18 | ltsubaddd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( ( F ` y ) - ( F ` x ) ) < 0 <-> ( F ` y ) < ( 0 + ( F ` x ) ) ) ) |
| 35 | 33 34 | mpbid | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( F ` y ) < ( 0 + ( F ` x ) ) ) |
| 36 | 16 | recnd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( F ` x ) e. CC ) |
| 37 | 36 | addlidd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( 0 + ( F ` x ) ) = ( F ` x ) ) |
| 38 | 35 37 | breqtrd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( F ` y ) < ( F ` x ) ) |
| 39 | fvex | |- ( F ` x ) e. _V |
|
| 40 | fvex | |- ( F ` y ) e. _V |
|
| 41 | 39 40 | brcnv | |- ( ( F ` x ) `' < ( F ` y ) <-> ( F ` y ) < ( F ` x ) ) |
| 42 | 38 41 | sylibr | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( F ` x ) `' < ( F ` y ) ) |
| 43 | 1 2 3 4 5 42 | dvgt0lem2 | |- ( ph -> F Isom < , `' < ( ( A [,] B ) , ran F ) ) |