This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function on a closed interval with nonzero derivative is one-to-one. (Contributed by Mario Carneiro, 19-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvne0.a | |- ( ph -> A e. RR ) |
|
| dvne0.b | |- ( ph -> B e. RR ) |
||
| dvne0.f | |- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
||
| dvne0.d | |- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
||
| dvne0.z | |- ( ph -> -. 0 e. ran ( RR _D F ) ) |
||
| Assertion | dvne0f1 | |- ( ph -> F : ( A [,] B ) -1-1-> RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvne0.a | |- ( ph -> A e. RR ) |
|
| 2 | dvne0.b | |- ( ph -> B e. RR ) |
|
| 3 | dvne0.f | |- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
|
| 4 | dvne0.d | |- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
|
| 5 | dvne0.z | |- ( ph -> -. 0 e. ran ( RR _D F ) ) |
|
| 6 | 1 2 3 4 5 | dvne0 | |- ( ph -> ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) ) |
| 7 | isof1o | |- ( F Isom < , < ( ( A [,] B ) , ran F ) -> F : ( A [,] B ) -1-1-onto-> ran F ) |
|
| 8 | isof1o | |- ( F Isom < , `' < ( ( A [,] B ) , ran F ) -> F : ( A [,] B ) -1-1-onto-> ran F ) |
|
| 9 | 7 8 | jaoi | |- ( ( F Isom < , < ( ( A [,] B ) , ran F ) \/ F Isom < , `' < ( ( A [,] B ) , ran F ) ) -> F : ( A [,] B ) -1-1-onto-> ran F ) |
| 10 | f1of1 | |- ( F : ( A [,] B ) -1-1-onto-> ran F -> F : ( A [,] B ) -1-1-> ran F ) |
|
| 11 | 6 9 10 | 3syl | |- ( ph -> F : ( A [,] B ) -1-1-> ran F ) |
| 12 | cncff | |- ( F e. ( ( A [,] B ) -cn-> RR ) -> F : ( A [,] B ) --> RR ) |
|
| 13 | frn | |- ( F : ( A [,] B ) --> RR -> ran F C_ RR ) |
|
| 14 | 3 12 13 | 3syl | |- ( ph -> ran F C_ RR ) |
| 15 | f1ss | |- ( ( F : ( A [,] B ) -1-1-> ran F /\ ran F C_ RR ) -> F : ( A [,] B ) -1-1-> RR ) |
|
| 16 | 11 14 15 | syl2anc | |- ( ph -> F : ( A [,] B ) -1-1-> RR ) |