This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function maps the complex numbers to the nonzero complex numbers. (Contributed by Paul Chapman, 16-Apr-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eff2 | |- exp : CC --> ( CC \ { 0 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eff | |- exp : CC --> CC |
|
| 2 | ffn | |- ( exp : CC --> CC -> exp Fn CC ) |
|
| 3 | 1 2 | ax-mp | |- exp Fn CC |
| 4 | efcl | |- ( x e. CC -> ( exp ` x ) e. CC ) |
|
| 5 | efne0 | |- ( x e. CC -> ( exp ` x ) =/= 0 ) |
|
| 6 | eldifsn | |- ( ( exp ` x ) e. ( CC \ { 0 } ) <-> ( ( exp ` x ) e. CC /\ ( exp ` x ) =/= 0 ) ) |
|
| 7 | 4 5 6 | sylanbrc | |- ( x e. CC -> ( exp ` x ) e. ( CC \ { 0 } ) ) |
| 8 | 7 | rgen | |- A. x e. CC ( exp ` x ) e. ( CC \ { 0 } ) |
| 9 | ffnfv | |- ( exp : CC --> ( CC \ { 0 } ) <-> ( exp Fn CC /\ A. x e. CC ( exp ` x ) e. ( CC \ { 0 } ) ) ) |
|
| 10 | 3 8 9 | mpbir2an | |- exp : CC --> ( CC \ { 0 } ) |