This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dvivth . (Contributed by Mario Carneiro, 20-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvivth.1 | |- ( ph -> M e. ( A (,) B ) ) |
|
| dvivth.2 | |- ( ph -> N e. ( A (,) B ) ) |
||
| dvivth.3 | |- ( ph -> F e. ( ( A (,) B ) -cn-> RR ) ) |
||
| dvivth.4 | |- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
||
| dvivth.5 | |- ( ph -> M < N ) |
||
| dvivth.6 | |- ( ph -> C e. ( ( ( RR _D F ) ` N ) [,] ( ( RR _D F ) ` M ) ) ) |
||
| dvivth.7 | |- G = ( y e. ( A (,) B ) |-> ( ( F ` y ) - ( C x. y ) ) ) |
||
| Assertion | dvivthlem2 | |- ( ph -> C e. ran ( RR _D F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvivth.1 | |- ( ph -> M e. ( A (,) B ) ) |
|
| 2 | dvivth.2 | |- ( ph -> N e. ( A (,) B ) ) |
|
| 3 | dvivth.3 | |- ( ph -> F e. ( ( A (,) B ) -cn-> RR ) ) |
|
| 4 | dvivth.4 | |- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
|
| 5 | dvivth.5 | |- ( ph -> M < N ) |
|
| 6 | dvivth.6 | |- ( ph -> C e. ( ( ( RR _D F ) ` N ) [,] ( ( RR _D F ) ` M ) ) ) |
|
| 7 | dvivth.7 | |- G = ( y e. ( A (,) B ) |-> ( ( F ` y ) - ( C x. y ) ) ) |
|
| 8 | 1 2 3 4 5 6 7 | dvivthlem1 | |- ( ph -> E. x e. ( M [,] N ) ( ( RR _D F ) ` x ) = C ) |
| 9 | dvf | |- ( RR _D F ) : dom ( RR _D F ) --> CC |
|
| 10 | 4 | feq2d | |- ( ph -> ( ( RR _D F ) : dom ( RR _D F ) --> CC <-> ( RR _D F ) : ( A (,) B ) --> CC ) ) |
| 11 | 9 10 | mpbii | |- ( ph -> ( RR _D F ) : ( A (,) B ) --> CC ) |
| 12 | 11 | ffnd | |- ( ph -> ( RR _D F ) Fn ( A (,) B ) ) |
| 13 | iccssioo2 | |- ( ( M e. ( A (,) B ) /\ N e. ( A (,) B ) ) -> ( M [,] N ) C_ ( A (,) B ) ) |
|
| 14 | 1 2 13 | syl2anc | |- ( ph -> ( M [,] N ) C_ ( A (,) B ) ) |
| 15 | 14 | sselda | |- ( ( ph /\ x e. ( M [,] N ) ) -> x e. ( A (,) B ) ) |
| 16 | fnfvelrn | |- ( ( ( RR _D F ) Fn ( A (,) B ) /\ x e. ( A (,) B ) ) -> ( ( RR _D F ) ` x ) e. ran ( RR _D F ) ) |
|
| 17 | 12 15 16 | syl2an2r | |- ( ( ph /\ x e. ( M [,] N ) ) -> ( ( RR _D F ) ` x ) e. ran ( RR _D F ) ) |
| 18 | eleq1 | |- ( ( ( RR _D F ) ` x ) = C -> ( ( ( RR _D F ) ` x ) e. ran ( RR _D F ) <-> C e. ran ( RR _D F ) ) ) |
|
| 19 | 17 18 | syl5ibcom | |- ( ( ph /\ x e. ( M [,] N ) ) -> ( ( ( RR _D F ) ` x ) = C -> C e. ran ( RR _D F ) ) ) |
| 20 | 19 | rexlimdva | |- ( ph -> ( E. x e. ( M [,] N ) ( ( RR _D F ) ` x ) = C -> C e. ran ( RR _D F ) ) ) |
| 21 | 8 20 | mpd | |- ( ph -> C e. ran ( RR _D F ) ) |