This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The interval between any two points of a continuous real function is contained in the range of the function. Equivalently, the range of a continuous real function is convex. (Contributed by Mario Carneiro, 12-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ivthicc.1 | |- ( ph -> A e. RR ) |
|
| ivthicc.2 | |- ( ph -> B e. RR ) |
||
| ivthicc.3 | |- ( ph -> M e. ( A [,] B ) ) |
||
| ivthicc.4 | |- ( ph -> N e. ( A [,] B ) ) |
||
| ivthicc.5 | |- ( ph -> ( A [,] B ) C_ D ) |
||
| ivthicc.7 | |- ( ph -> F e. ( D -cn-> CC ) ) |
||
| ivthicc.8 | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. RR ) |
||
| Assertion | ivthicc | |- ( ph -> ( ( F ` M ) [,] ( F ` N ) ) C_ ran F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ivthicc.1 | |- ( ph -> A e. RR ) |
|
| 2 | ivthicc.2 | |- ( ph -> B e. RR ) |
|
| 3 | ivthicc.3 | |- ( ph -> M e. ( A [,] B ) ) |
|
| 4 | ivthicc.4 | |- ( ph -> N e. ( A [,] B ) ) |
|
| 5 | ivthicc.5 | |- ( ph -> ( A [,] B ) C_ D ) |
|
| 6 | ivthicc.7 | |- ( ph -> F e. ( D -cn-> CC ) ) |
|
| 7 | ivthicc.8 | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. RR ) |
|
| 8 | simpll | |- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M < N ) -> ph ) |
|
| 9 | elicc2 | |- ( ( A e. RR /\ B e. RR ) -> ( M e. ( A [,] B ) <-> ( M e. RR /\ A <_ M /\ M <_ B ) ) ) |
|
| 10 | 1 2 9 | syl2anc | |- ( ph -> ( M e. ( A [,] B ) <-> ( M e. RR /\ A <_ M /\ M <_ B ) ) ) |
| 11 | 3 10 | mpbid | |- ( ph -> ( M e. RR /\ A <_ M /\ M <_ B ) ) |
| 12 | 11 | simp1d | |- ( ph -> M e. RR ) |
| 13 | 12 | ad2antrr | |- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M < N ) -> M e. RR ) |
| 14 | elicc2 | |- ( ( A e. RR /\ B e. RR ) -> ( N e. ( A [,] B ) <-> ( N e. RR /\ A <_ N /\ N <_ B ) ) ) |
|
| 15 | 1 2 14 | syl2anc | |- ( ph -> ( N e. ( A [,] B ) <-> ( N e. RR /\ A <_ N /\ N <_ B ) ) ) |
| 16 | 4 15 | mpbid | |- ( ph -> ( N e. RR /\ A <_ N /\ N <_ B ) ) |
| 17 | 16 | simp1d | |- ( ph -> N e. RR ) |
| 18 | 17 | ad2antrr | |- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M < N ) -> N e. RR ) |
| 19 | fveq2 | |- ( x = M -> ( F ` x ) = ( F ` M ) ) |
|
| 20 | 19 | eleq1d | |- ( x = M -> ( ( F ` x ) e. RR <-> ( F ` M ) e. RR ) ) |
| 21 | 7 | ralrimiva | |- ( ph -> A. x e. ( A [,] B ) ( F ` x ) e. RR ) |
| 22 | 20 21 3 | rspcdva | |- ( ph -> ( F ` M ) e. RR ) |
| 23 | fveq2 | |- ( x = N -> ( F ` x ) = ( F ` N ) ) |
|
| 24 | 23 | eleq1d | |- ( x = N -> ( ( F ` x ) e. RR <-> ( F ` N ) e. RR ) ) |
| 25 | 24 21 4 | rspcdva | |- ( ph -> ( F ` N ) e. RR ) |
| 26 | iccssre | |- ( ( ( F ` M ) e. RR /\ ( F ` N ) e. RR ) -> ( ( F ` M ) [,] ( F ` N ) ) C_ RR ) |
|
| 27 | 22 25 26 | syl2anc | |- ( ph -> ( ( F ` M ) [,] ( F ` N ) ) C_ RR ) |
| 28 | 27 | sselda | |- ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) -> y e. RR ) |
| 29 | 28 | adantr | |- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M < N ) -> y e. RR ) |
| 30 | simpr | |- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M < N ) -> M < N ) |
|
| 31 | 11 | simp2d | |- ( ph -> A <_ M ) |
| 32 | 16 | simp3d | |- ( ph -> N <_ B ) |
| 33 | iccss | |- ( ( ( A e. RR /\ B e. RR ) /\ ( A <_ M /\ N <_ B ) ) -> ( M [,] N ) C_ ( A [,] B ) ) |
|
| 34 | 1 2 31 32 33 | syl22anc | |- ( ph -> ( M [,] N ) C_ ( A [,] B ) ) |
| 35 | 34 5 | sstrd | |- ( ph -> ( M [,] N ) C_ D ) |
| 36 | 35 | ad2antrr | |- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M < N ) -> ( M [,] N ) C_ D ) |
| 37 | 6 | ad2antrr | |- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M < N ) -> F e. ( D -cn-> CC ) ) |
| 38 | 34 | sselda | |- ( ( ph /\ x e. ( M [,] N ) ) -> x e. ( A [,] B ) ) |
| 39 | 38 7 | syldan | |- ( ( ph /\ x e. ( M [,] N ) ) -> ( F ` x ) e. RR ) |
| 40 | 8 39 | sylan | |- ( ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M < N ) /\ x e. ( M [,] N ) ) -> ( F ` x ) e. RR ) |
| 41 | elicc2 | |- ( ( ( F ` M ) e. RR /\ ( F ` N ) e. RR ) -> ( y e. ( ( F ` M ) [,] ( F ` N ) ) <-> ( y e. RR /\ ( F ` M ) <_ y /\ y <_ ( F ` N ) ) ) ) |
|
| 42 | 22 25 41 | syl2anc | |- ( ph -> ( y e. ( ( F ` M ) [,] ( F ` N ) ) <-> ( y e. RR /\ ( F ` M ) <_ y /\ y <_ ( F ` N ) ) ) ) |
| 43 | 42 | biimpa | |- ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) -> ( y e. RR /\ ( F ` M ) <_ y /\ y <_ ( F ` N ) ) ) |
| 44 | 3simpc | |- ( ( y e. RR /\ ( F ` M ) <_ y /\ y <_ ( F ` N ) ) -> ( ( F ` M ) <_ y /\ y <_ ( F ` N ) ) ) |
|
| 45 | 43 44 | syl | |- ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) -> ( ( F ` M ) <_ y /\ y <_ ( F ` N ) ) ) |
| 46 | 45 | adantr | |- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M < N ) -> ( ( F ` M ) <_ y /\ y <_ ( F ` N ) ) ) |
| 47 | 13 18 29 30 36 37 40 46 | ivthle | |- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M < N ) -> E. z e. ( M [,] N ) ( F ` z ) = y ) |
| 48 | 35 | sselda | |- ( ( ph /\ z e. ( M [,] N ) ) -> z e. D ) |
| 49 | cncff | |- ( F e. ( D -cn-> CC ) -> F : D --> CC ) |
|
| 50 | ffn | |- ( F : D --> CC -> F Fn D ) |
|
| 51 | 6 49 50 | 3syl | |- ( ph -> F Fn D ) |
| 52 | fnfvelrn | |- ( ( F Fn D /\ z e. D ) -> ( F ` z ) e. ran F ) |
|
| 53 | 51 52 | sylan | |- ( ( ph /\ z e. D ) -> ( F ` z ) e. ran F ) |
| 54 | eleq1 | |- ( ( F ` z ) = y -> ( ( F ` z ) e. ran F <-> y e. ran F ) ) |
|
| 55 | 53 54 | syl5ibcom | |- ( ( ph /\ z e. D ) -> ( ( F ` z ) = y -> y e. ran F ) ) |
| 56 | 48 55 | syldan | |- ( ( ph /\ z e. ( M [,] N ) ) -> ( ( F ` z ) = y -> y e. ran F ) ) |
| 57 | 56 | rexlimdva | |- ( ph -> ( E. z e. ( M [,] N ) ( F ` z ) = y -> y e. ran F ) ) |
| 58 | 8 47 57 | sylc | |- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M < N ) -> y e. ran F ) |
| 59 | simplr | |- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M = N ) -> y e. ( ( F ` M ) [,] ( F ` N ) ) ) |
|
| 60 | simpr | |- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M = N ) -> M = N ) |
|
| 61 | 60 | fveq2d | |- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M = N ) -> ( F ` M ) = ( F ` N ) ) |
| 62 | 61 | oveq2d | |- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M = N ) -> ( ( F ` M ) [,] ( F ` M ) ) = ( ( F ` M ) [,] ( F ` N ) ) ) |
| 63 | 22 | rexrd | |- ( ph -> ( F ` M ) e. RR* ) |
| 64 | 63 | ad2antrr | |- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M = N ) -> ( F ` M ) e. RR* ) |
| 65 | iccid | |- ( ( F ` M ) e. RR* -> ( ( F ` M ) [,] ( F ` M ) ) = { ( F ` M ) } ) |
|
| 66 | 64 65 | syl | |- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M = N ) -> ( ( F ` M ) [,] ( F ` M ) ) = { ( F ` M ) } ) |
| 67 | 62 66 | eqtr3d | |- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M = N ) -> ( ( F ` M ) [,] ( F ` N ) ) = { ( F ` M ) } ) |
| 68 | 59 67 | eleqtrd | |- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M = N ) -> y e. { ( F ` M ) } ) |
| 69 | elsni | |- ( y e. { ( F ` M ) } -> y = ( F ` M ) ) |
|
| 70 | 68 69 | syl | |- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M = N ) -> y = ( F ` M ) ) |
| 71 | 5 3 | sseldd | |- ( ph -> M e. D ) |
| 72 | fnfvelrn | |- ( ( F Fn D /\ M e. D ) -> ( F ` M ) e. ran F ) |
|
| 73 | 51 71 72 | syl2anc | |- ( ph -> ( F ` M ) e. ran F ) |
| 74 | 73 | ad2antrr | |- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M = N ) -> ( F ` M ) e. ran F ) |
| 75 | 70 74 | eqeltrd | |- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ M = N ) -> y e. ran F ) |
| 76 | simpll | |- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ N < M ) -> ph ) |
|
| 77 | 17 | ad2antrr | |- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ N < M ) -> N e. RR ) |
| 78 | 12 | ad2antrr | |- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ N < M ) -> M e. RR ) |
| 79 | 28 | adantr | |- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ N < M ) -> y e. RR ) |
| 80 | simpr | |- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ N < M ) -> N < M ) |
|
| 81 | 16 | simp2d | |- ( ph -> A <_ N ) |
| 82 | 11 | simp3d | |- ( ph -> M <_ B ) |
| 83 | iccss | |- ( ( ( A e. RR /\ B e. RR ) /\ ( A <_ N /\ M <_ B ) ) -> ( N [,] M ) C_ ( A [,] B ) ) |
|
| 84 | 1 2 81 82 83 | syl22anc | |- ( ph -> ( N [,] M ) C_ ( A [,] B ) ) |
| 85 | 84 5 | sstrd | |- ( ph -> ( N [,] M ) C_ D ) |
| 86 | 85 | ad2antrr | |- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ N < M ) -> ( N [,] M ) C_ D ) |
| 87 | 6 | ad2antrr | |- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ N < M ) -> F e. ( D -cn-> CC ) ) |
| 88 | 84 | sselda | |- ( ( ph /\ x e. ( N [,] M ) ) -> x e. ( A [,] B ) ) |
| 89 | 88 7 | syldan | |- ( ( ph /\ x e. ( N [,] M ) ) -> ( F ` x ) e. RR ) |
| 90 | 76 89 | sylan | |- ( ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ N < M ) /\ x e. ( N [,] M ) ) -> ( F ` x ) e. RR ) |
| 91 | 45 | adantr | |- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ N < M ) -> ( ( F ` M ) <_ y /\ y <_ ( F ` N ) ) ) |
| 92 | 77 78 79 80 86 87 90 91 | ivthle2 | |- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ N < M ) -> E. z e. ( N [,] M ) ( F ` z ) = y ) |
| 93 | 85 | sselda | |- ( ( ph /\ z e. ( N [,] M ) ) -> z e. D ) |
| 94 | 93 55 | syldan | |- ( ( ph /\ z e. ( N [,] M ) ) -> ( ( F ` z ) = y -> y e. ran F ) ) |
| 95 | 94 | rexlimdva | |- ( ph -> ( E. z e. ( N [,] M ) ( F ` z ) = y -> y e. ran F ) ) |
| 96 | 76 92 95 | sylc | |- ( ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) /\ N < M ) -> y e. ran F ) |
| 97 | 12 17 | lttri4d | |- ( ph -> ( M < N \/ M = N \/ N < M ) ) |
| 98 | 97 | adantr | |- ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) -> ( M < N \/ M = N \/ N < M ) ) |
| 99 | 58 75 96 98 | mpjao3dan | |- ( ( ph /\ y e. ( ( F ` M ) [,] ( F ` N ) ) ) -> y e. ran F ) |
| 100 | 99 | ex | |- ( ph -> ( y e. ( ( F ` M ) [,] ( F ` N ) ) -> y e. ran F ) ) |
| 101 | 100 | ssrdv | |- ( ph -> ( ( F ` M ) [,] ( F ` N ) ) C_ ran F ) |