This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure lemma for dvmptcmul and other related theorems. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmptadd.s | |- ( ph -> S e. { RR , CC } ) |
|
| dvmptadd.a | |- ( ( ph /\ x e. X ) -> A e. CC ) |
||
| dvmptadd.b | |- ( ( ph /\ x e. X ) -> B e. V ) |
||
| dvmptadd.da | |- ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
||
| Assertion | dvmptcl | |- ( ( ph /\ x e. X ) -> B e. CC ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptadd.s | |- ( ph -> S e. { RR , CC } ) |
|
| 2 | dvmptadd.a | |- ( ( ph /\ x e. X ) -> A e. CC ) |
|
| 3 | dvmptadd.b | |- ( ( ph /\ x e. X ) -> B e. V ) |
|
| 4 | dvmptadd.da | |- ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
|
| 5 | dvfg | |- ( S e. { RR , CC } -> ( S _D ( x e. X |-> A ) ) : dom ( S _D ( x e. X |-> A ) ) --> CC ) |
|
| 6 | 1 5 | syl | |- ( ph -> ( S _D ( x e. X |-> A ) ) : dom ( S _D ( x e. X |-> A ) ) --> CC ) |
| 7 | 4 | dmeqd | |- ( ph -> dom ( S _D ( x e. X |-> A ) ) = dom ( x e. X |-> B ) ) |
| 8 | 3 | ralrimiva | |- ( ph -> A. x e. X B e. V ) |
| 9 | dmmptg | |- ( A. x e. X B e. V -> dom ( x e. X |-> B ) = X ) |
|
| 10 | 8 9 | syl | |- ( ph -> dom ( x e. X |-> B ) = X ) |
| 11 | 7 10 | eqtrd | |- ( ph -> dom ( S _D ( x e. X |-> A ) ) = X ) |
| 12 | 11 | feq2d | |- ( ph -> ( ( S _D ( x e. X |-> A ) ) : dom ( S _D ( x e. X |-> A ) ) --> CC <-> ( S _D ( x e. X |-> A ) ) : X --> CC ) ) |
| 13 | 6 12 | mpbid | |- ( ph -> ( S _D ( x e. X |-> A ) ) : X --> CC ) |
| 14 | 4 | feq1d | |- ( ph -> ( ( S _D ( x e. X |-> A ) ) : X --> CC <-> ( x e. X |-> B ) : X --> CC ) ) |
| 15 | 13 14 | mpbid | |- ( ph -> ( x e. X |-> B ) : X --> CC ) |
| 16 | 15 | fvmptelcdm | |- ( ( ph /\ x e. X ) -> B e. CC ) |