This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The partially evaluated curry functor at a morphism. (Contributed by Mario Carneiro, 12-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | curfval.g | |- G = ( <. C , D >. curryF F ) |
|
| curfval.a | |- A = ( Base ` C ) |
||
| curfval.c | |- ( ph -> C e. Cat ) |
||
| curfval.d | |- ( ph -> D e. Cat ) |
||
| curfval.f | |- ( ph -> F e. ( ( C Xc. D ) Func E ) ) |
||
| curfval.b | |- B = ( Base ` D ) |
||
| curf1.x | |- ( ph -> X e. A ) |
||
| curf1.k | |- K = ( ( 1st ` G ) ` X ) |
||
| curf11.y | |- ( ph -> Y e. B ) |
||
| curf12.j | |- J = ( Hom ` D ) |
||
| curf12.1 | |- .1. = ( Id ` C ) |
||
| curf12.y | |- ( ph -> Z e. B ) |
||
| curf12.g | |- ( ph -> H e. ( Y J Z ) ) |
||
| Assertion | curf12 | |- ( ph -> ( ( Y ( 2nd ` K ) Z ) ` H ) = ( ( .1. ` X ) ( <. X , Y >. ( 2nd ` F ) <. X , Z >. ) H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | curfval.g | |- G = ( <. C , D >. curryF F ) |
|
| 2 | curfval.a | |- A = ( Base ` C ) |
|
| 3 | curfval.c | |- ( ph -> C e. Cat ) |
|
| 4 | curfval.d | |- ( ph -> D e. Cat ) |
|
| 5 | curfval.f | |- ( ph -> F e. ( ( C Xc. D ) Func E ) ) |
|
| 6 | curfval.b | |- B = ( Base ` D ) |
|
| 7 | curf1.x | |- ( ph -> X e. A ) |
|
| 8 | curf1.k | |- K = ( ( 1st ` G ) ` X ) |
|
| 9 | curf11.y | |- ( ph -> Y e. B ) |
|
| 10 | curf12.j | |- J = ( Hom ` D ) |
|
| 11 | curf12.1 | |- .1. = ( Id ` C ) |
|
| 12 | curf12.y | |- ( ph -> Z e. B ) |
|
| 13 | curf12.g | |- ( ph -> H e. ( Y J Z ) ) |
|
| 14 | 1 2 3 4 5 6 7 8 10 11 | curf1 | |- ( ph -> K = <. ( y e. B |-> ( X ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) >. ) |
| 15 | 6 | fvexi | |- B e. _V |
| 16 | 15 | mptex | |- ( y e. B |-> ( X ( 1st ` F ) y ) ) e. _V |
| 17 | 15 15 | mpoex | |- ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) e. _V |
| 18 | 16 17 | op2ndd | |- ( K = <. ( y e. B |-> ( X ( 1st ` F ) y ) ) , ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) >. -> ( 2nd ` K ) = ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) ) |
| 19 | 14 18 | syl | |- ( ph -> ( 2nd ` K ) = ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) ) |
| 20 | 12 | adantr | |- ( ( ph /\ y = Y ) -> Z e. B ) |
| 21 | ovex | |- ( y J z ) e. _V |
|
| 22 | 21 | mptex | |- ( g e. ( y J z ) |-> ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) e. _V |
| 23 | 22 | a1i | |- ( ( ph /\ ( y = Y /\ z = Z ) ) -> ( g e. ( y J z ) |-> ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) e. _V ) |
| 24 | 13 | adantr | |- ( ( ph /\ ( y = Y /\ z = Z ) ) -> H e. ( Y J Z ) ) |
| 25 | simprl | |- ( ( ph /\ ( y = Y /\ z = Z ) ) -> y = Y ) |
|
| 26 | simprr | |- ( ( ph /\ ( y = Y /\ z = Z ) ) -> z = Z ) |
|
| 27 | 25 26 | oveq12d | |- ( ( ph /\ ( y = Y /\ z = Z ) ) -> ( y J z ) = ( Y J Z ) ) |
| 28 | 24 27 | eleqtrrd | |- ( ( ph /\ ( y = Y /\ z = Z ) ) -> H e. ( y J z ) ) |
| 29 | ovexd | |- ( ( ( ph /\ ( y = Y /\ z = Z ) ) /\ g = H ) -> ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) e. _V ) |
|
| 30 | simplrl | |- ( ( ( ph /\ ( y = Y /\ z = Z ) ) /\ g = H ) -> y = Y ) |
|
| 31 | 30 | opeq2d | |- ( ( ( ph /\ ( y = Y /\ z = Z ) ) /\ g = H ) -> <. X , y >. = <. X , Y >. ) |
| 32 | simplrr | |- ( ( ( ph /\ ( y = Y /\ z = Z ) ) /\ g = H ) -> z = Z ) |
|
| 33 | 32 | opeq2d | |- ( ( ( ph /\ ( y = Y /\ z = Z ) ) /\ g = H ) -> <. X , z >. = <. X , Z >. ) |
| 34 | 31 33 | oveq12d | |- ( ( ( ph /\ ( y = Y /\ z = Z ) ) /\ g = H ) -> ( <. X , y >. ( 2nd ` F ) <. X , z >. ) = ( <. X , Y >. ( 2nd ` F ) <. X , Z >. ) ) |
| 35 | eqidd | |- ( ( ( ph /\ ( y = Y /\ z = Z ) ) /\ g = H ) -> ( .1. ` X ) = ( .1. ` X ) ) |
|
| 36 | simpr | |- ( ( ( ph /\ ( y = Y /\ z = Z ) ) /\ g = H ) -> g = H ) |
|
| 37 | 34 35 36 | oveq123d | |- ( ( ( ph /\ ( y = Y /\ z = Z ) ) /\ g = H ) -> ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) = ( ( .1. ` X ) ( <. X , Y >. ( 2nd ` F ) <. X , Z >. ) H ) ) |
| 38 | 28 29 37 | fvmptdv2 | |- ( ( ph /\ ( y = Y /\ z = Z ) ) -> ( ( Y ( 2nd ` K ) Z ) = ( g e. ( y J z ) |-> ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) -> ( ( Y ( 2nd ` K ) Z ) ` H ) = ( ( .1. ` X ) ( <. X , Y >. ( 2nd ` F ) <. X , Z >. ) H ) ) ) |
| 39 | 9 20 23 38 | ovmpodv | |- ( ph -> ( ( 2nd ` K ) = ( y e. B , z e. B |-> ( g e. ( y J z ) |-> ( ( .1. ` X ) ( <. X , y >. ( 2nd ` F ) <. X , z >. ) g ) ) ) -> ( ( Y ( 2nd ` K ) Z ) ` H ) = ( ( .1. ` X ) ( <. X , Y >. ( 2nd ` F ) <. X , Z >. ) H ) ) ) |
| 40 | 19 39 | mpd | |- ( ph -> ( ( Y ( 2nd ` K ) Z ) ` H ) = ( ( .1. ` X ) ( <. X , Y >. ( 2nd ` F ) <. X , Z >. ) H ) ) |