This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of a continuous function with a measurable function is measurable. (More generally, G can be a Borel-measurable function, but notably the condition that G be only measurable is too weak, the usual counterexample taking G to be the Cantor function and F the indicator function of the G -image of a nonmeasurable set, which is a subset of the Cantor set and hence null and measurable.) (Contributed by Mario Carneiro, 25-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cncombf | |- ( ( F e. MblFn /\ F : A --> B /\ G e. ( B -cn-> CC ) ) -> ( G o. F ) e. MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 | |- ( ( F e. MblFn /\ F : A --> B /\ G e. ( B -cn-> CC ) ) -> G e. ( B -cn-> CC ) ) |
|
| 2 | cncff | |- ( G e. ( B -cn-> CC ) -> G : B --> CC ) |
|
| 3 | 1 2 | syl | |- ( ( F e. MblFn /\ F : A --> B /\ G e. ( B -cn-> CC ) ) -> G : B --> CC ) |
| 4 | simp2 | |- ( ( F e. MblFn /\ F : A --> B /\ G e. ( B -cn-> CC ) ) -> F : A --> B ) |
|
| 5 | fco | |- ( ( G : B --> CC /\ F : A --> B ) -> ( G o. F ) : A --> CC ) |
|
| 6 | 3 4 5 | syl2anc | |- ( ( F e. MblFn /\ F : A --> B /\ G e. ( B -cn-> CC ) ) -> ( G o. F ) : A --> CC ) |
| 7 | 4 | fdmd | |- ( ( F e. MblFn /\ F : A --> B /\ G e. ( B -cn-> CC ) ) -> dom F = A ) |
| 8 | mbfdm | |- ( F e. MblFn -> dom F e. dom vol ) |
|
| 9 | 8 | 3ad2ant1 | |- ( ( F e. MblFn /\ F : A --> B /\ G e. ( B -cn-> CC ) ) -> dom F e. dom vol ) |
| 10 | 7 9 | eqeltrrd | |- ( ( F e. MblFn /\ F : A --> B /\ G e. ( B -cn-> CC ) ) -> A e. dom vol ) |
| 11 | mblss | |- ( A e. dom vol -> A C_ RR ) |
|
| 12 | 10 11 | syl | |- ( ( F e. MblFn /\ F : A --> B /\ G e. ( B -cn-> CC ) ) -> A C_ RR ) |
| 13 | cnex | |- CC e. _V |
|
| 14 | reex | |- RR e. _V |
|
| 15 | elpm2r | |- ( ( ( CC e. _V /\ RR e. _V ) /\ ( ( G o. F ) : A --> CC /\ A C_ RR ) ) -> ( G o. F ) e. ( CC ^pm RR ) ) |
|
| 16 | 13 14 15 | mpanl12 | |- ( ( ( G o. F ) : A --> CC /\ A C_ RR ) -> ( G o. F ) e. ( CC ^pm RR ) ) |
| 17 | 6 12 16 | syl2anc | |- ( ( F e. MblFn /\ F : A --> B /\ G e. ( B -cn-> CC ) ) -> ( G o. F ) e. ( CC ^pm RR ) ) |
| 18 | coeq1 | |- ( g = ( Re o. G ) -> ( g o. F ) = ( ( Re o. G ) o. F ) ) |
|
| 19 | coass | |- ( ( Re o. G ) o. F ) = ( Re o. ( G o. F ) ) |
|
| 20 | 18 19 | eqtrdi | |- ( g = ( Re o. G ) -> ( g o. F ) = ( Re o. ( G o. F ) ) ) |
| 21 | 20 | cnveqd | |- ( g = ( Re o. G ) -> `' ( g o. F ) = `' ( Re o. ( G o. F ) ) ) |
| 22 | 21 | imaeq1d | |- ( g = ( Re o. G ) -> ( `' ( g o. F ) " x ) = ( `' ( Re o. ( G o. F ) ) " x ) ) |
| 23 | 22 | eleq1d | |- ( g = ( Re o. G ) -> ( ( `' ( g o. F ) " x ) e. dom vol <-> ( `' ( Re o. ( G o. F ) ) " x ) e. dom vol ) ) |
| 24 | cnvco | |- `' ( g o. F ) = ( `' F o. `' g ) |
|
| 25 | 24 | imaeq1i | |- ( `' ( g o. F ) " x ) = ( ( `' F o. `' g ) " x ) |
| 26 | imaco | |- ( ( `' F o. `' g ) " x ) = ( `' F " ( `' g " x ) ) |
|
| 27 | 25 26 | eqtri | |- ( `' ( g o. F ) " x ) = ( `' F " ( `' g " x ) ) |
| 28 | simplll | |- ( ( ( ( F e. MblFn /\ F : A --> B ) /\ x e. ran (,) ) /\ g e. ( B -cn-> RR ) ) -> F e. MblFn ) |
|
| 29 | simpllr | |- ( ( ( ( F e. MblFn /\ F : A --> B ) /\ x e. ran (,) ) /\ g e. ( B -cn-> RR ) ) -> F : A --> B ) |
|
| 30 | cncfrss | |- ( g e. ( B -cn-> RR ) -> B C_ CC ) |
|
| 31 | 30 | adantl | |- ( ( ( ( F e. MblFn /\ F : A --> B ) /\ x e. ran (,) ) /\ g e. ( B -cn-> RR ) ) -> B C_ CC ) |
| 32 | simpr | |- ( ( ( ( F e. MblFn /\ F : A --> B ) /\ x e. ran (,) ) /\ g e. ( B -cn-> RR ) ) -> g e. ( B -cn-> RR ) ) |
|
| 33 | ax-resscn | |- RR C_ CC |
|
| 34 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 35 | eqid | |- ( ( TopOpen ` CCfld ) |`t B ) = ( ( TopOpen ` CCfld ) |`t B ) |
|
| 36 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 37 | 34 35 36 | cncfcn | |- ( ( B C_ CC /\ RR C_ CC ) -> ( B -cn-> RR ) = ( ( ( TopOpen ` CCfld ) |`t B ) Cn ( topGen ` ran (,) ) ) ) |
| 38 | 31 33 37 | sylancl | |- ( ( ( ( F e. MblFn /\ F : A --> B ) /\ x e. ran (,) ) /\ g e. ( B -cn-> RR ) ) -> ( B -cn-> RR ) = ( ( ( TopOpen ` CCfld ) |`t B ) Cn ( topGen ` ran (,) ) ) ) |
| 39 | 32 38 | eleqtrd | |- ( ( ( ( F e. MblFn /\ F : A --> B ) /\ x e. ran (,) ) /\ g e. ( B -cn-> RR ) ) -> g e. ( ( ( TopOpen ` CCfld ) |`t B ) Cn ( topGen ` ran (,) ) ) ) |
| 40 | retopbas | |- ran (,) e. TopBases |
|
| 41 | bastg | |- ( ran (,) e. TopBases -> ran (,) C_ ( topGen ` ran (,) ) ) |
|
| 42 | 40 41 | ax-mp | |- ran (,) C_ ( topGen ` ran (,) ) |
| 43 | simplr | |- ( ( ( ( F e. MblFn /\ F : A --> B ) /\ x e. ran (,) ) /\ g e. ( B -cn-> RR ) ) -> x e. ran (,) ) |
|
| 44 | 42 43 | sselid | |- ( ( ( ( F e. MblFn /\ F : A --> B ) /\ x e. ran (,) ) /\ g e. ( B -cn-> RR ) ) -> x e. ( topGen ` ran (,) ) ) |
| 45 | cnima | |- ( ( g e. ( ( ( TopOpen ` CCfld ) |`t B ) Cn ( topGen ` ran (,) ) ) /\ x e. ( topGen ` ran (,) ) ) -> ( `' g " x ) e. ( ( TopOpen ` CCfld ) |`t B ) ) |
|
| 46 | 39 44 45 | syl2anc | |- ( ( ( ( F e. MblFn /\ F : A --> B ) /\ x e. ran (,) ) /\ g e. ( B -cn-> RR ) ) -> ( `' g " x ) e. ( ( TopOpen ` CCfld ) |`t B ) ) |
| 47 | 34 35 | mbfimaopn2 | |- ( ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) /\ ( `' g " x ) e. ( ( TopOpen ` CCfld ) |`t B ) ) -> ( `' F " ( `' g " x ) ) e. dom vol ) |
| 48 | 28 29 31 46 47 | syl31anc | |- ( ( ( ( F e. MblFn /\ F : A --> B ) /\ x e. ran (,) ) /\ g e. ( B -cn-> RR ) ) -> ( `' F " ( `' g " x ) ) e. dom vol ) |
| 49 | 27 48 | eqeltrid | |- ( ( ( ( F e. MblFn /\ F : A --> B ) /\ x e. ran (,) ) /\ g e. ( B -cn-> RR ) ) -> ( `' ( g o. F ) " x ) e. dom vol ) |
| 50 | 49 | ralrimiva | |- ( ( ( F e. MblFn /\ F : A --> B ) /\ x e. ran (,) ) -> A. g e. ( B -cn-> RR ) ( `' ( g o. F ) " x ) e. dom vol ) |
| 51 | 50 | 3adantl3 | |- ( ( ( F e. MblFn /\ F : A --> B /\ G e. ( B -cn-> CC ) ) /\ x e. ran (,) ) -> A. g e. ( B -cn-> RR ) ( `' ( g o. F ) " x ) e. dom vol ) |
| 52 | recncf | |- Re e. ( CC -cn-> RR ) |
|
| 53 | 52 | a1i | |- ( ( F e. MblFn /\ F : A --> B /\ G e. ( B -cn-> CC ) ) -> Re e. ( CC -cn-> RR ) ) |
| 54 | 1 53 | cncfco | |- ( ( F e. MblFn /\ F : A --> B /\ G e. ( B -cn-> CC ) ) -> ( Re o. G ) e. ( B -cn-> RR ) ) |
| 55 | 54 | adantr | |- ( ( ( F e. MblFn /\ F : A --> B /\ G e. ( B -cn-> CC ) ) /\ x e. ran (,) ) -> ( Re o. G ) e. ( B -cn-> RR ) ) |
| 56 | 23 51 55 | rspcdva | |- ( ( ( F e. MblFn /\ F : A --> B /\ G e. ( B -cn-> CC ) ) /\ x e. ran (,) ) -> ( `' ( Re o. ( G o. F ) ) " x ) e. dom vol ) |
| 57 | coeq1 | |- ( g = ( Im o. G ) -> ( g o. F ) = ( ( Im o. G ) o. F ) ) |
|
| 58 | coass | |- ( ( Im o. G ) o. F ) = ( Im o. ( G o. F ) ) |
|
| 59 | 57 58 | eqtrdi | |- ( g = ( Im o. G ) -> ( g o. F ) = ( Im o. ( G o. F ) ) ) |
| 60 | 59 | cnveqd | |- ( g = ( Im o. G ) -> `' ( g o. F ) = `' ( Im o. ( G o. F ) ) ) |
| 61 | 60 | imaeq1d | |- ( g = ( Im o. G ) -> ( `' ( g o. F ) " x ) = ( `' ( Im o. ( G o. F ) ) " x ) ) |
| 62 | 61 | eleq1d | |- ( g = ( Im o. G ) -> ( ( `' ( g o. F ) " x ) e. dom vol <-> ( `' ( Im o. ( G o. F ) ) " x ) e. dom vol ) ) |
| 63 | imcncf | |- Im e. ( CC -cn-> RR ) |
|
| 64 | 63 | a1i | |- ( ( F e. MblFn /\ F : A --> B /\ G e. ( B -cn-> CC ) ) -> Im e. ( CC -cn-> RR ) ) |
| 65 | 1 64 | cncfco | |- ( ( F e. MblFn /\ F : A --> B /\ G e. ( B -cn-> CC ) ) -> ( Im o. G ) e. ( B -cn-> RR ) ) |
| 66 | 65 | adantr | |- ( ( ( F e. MblFn /\ F : A --> B /\ G e. ( B -cn-> CC ) ) /\ x e. ran (,) ) -> ( Im o. G ) e. ( B -cn-> RR ) ) |
| 67 | 62 51 66 | rspcdva | |- ( ( ( F e. MblFn /\ F : A --> B /\ G e. ( B -cn-> CC ) ) /\ x e. ran (,) ) -> ( `' ( Im o. ( G o. F ) ) " x ) e. dom vol ) |
| 68 | 56 67 | jca | |- ( ( ( F e. MblFn /\ F : A --> B /\ G e. ( B -cn-> CC ) ) /\ x e. ran (,) ) -> ( ( `' ( Re o. ( G o. F ) ) " x ) e. dom vol /\ ( `' ( Im o. ( G o. F ) ) " x ) e. dom vol ) ) |
| 69 | 68 | ralrimiva | |- ( ( F e. MblFn /\ F : A --> B /\ G e. ( B -cn-> CC ) ) -> A. x e. ran (,) ( ( `' ( Re o. ( G o. F ) ) " x ) e. dom vol /\ ( `' ( Im o. ( G o. F ) ) " x ) e. dom vol ) ) |
| 70 | ismbf1 | |- ( ( G o. F ) e. MblFn <-> ( ( G o. F ) e. ( CC ^pm RR ) /\ A. x e. ran (,) ( ( `' ( Re o. ( G o. F ) ) " x ) e. dom vol /\ ( `' ( Im o. ( G o. F ) ) " x ) e. dom vol ) ) ) |
|
| 71 | 17 69 70 | sylanbrc | |- ( ( F e. MblFn /\ F : A --> B /\ G e. ( B -cn-> CC ) ) -> ( G o. F ) e. MblFn ) |