This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of a measurable function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mbfdm | |- ( F e. MblFn -> dom F e. dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ref | |- Re : CC --> RR |
|
| 2 | mbff | |- ( F e. MblFn -> F : dom F --> CC ) |
|
| 3 | fco | |- ( ( Re : CC --> RR /\ F : dom F --> CC ) -> ( Re o. F ) : dom F --> RR ) |
|
| 4 | 1 2 3 | sylancr | |- ( F e. MblFn -> ( Re o. F ) : dom F --> RR ) |
| 5 | fimacnv | |- ( ( Re o. F ) : dom F --> RR -> ( `' ( Re o. F ) " RR ) = dom F ) |
|
| 6 | 4 5 | syl | |- ( F e. MblFn -> ( `' ( Re o. F ) " RR ) = dom F ) |
| 7 | imaeq2 | |- ( x = RR -> ( `' ( Re o. F ) " x ) = ( `' ( Re o. F ) " RR ) ) |
|
| 8 | 7 | eleq1d | |- ( x = RR -> ( ( `' ( Re o. F ) " x ) e. dom vol <-> ( `' ( Re o. F ) " RR ) e. dom vol ) ) |
| 9 | ismbf1 | |- ( F e. MblFn <-> ( F e. ( CC ^pm RR ) /\ A. x e. ran (,) ( ( `' ( Re o. F ) " x ) e. dom vol /\ ( `' ( Im o. F ) " x ) e. dom vol ) ) ) |
|
| 10 | simpl | |- ( ( ( `' ( Re o. F ) " x ) e. dom vol /\ ( `' ( Im o. F ) " x ) e. dom vol ) -> ( `' ( Re o. F ) " x ) e. dom vol ) |
|
| 11 | 10 | ralimi | |- ( A. x e. ran (,) ( ( `' ( Re o. F ) " x ) e. dom vol /\ ( `' ( Im o. F ) " x ) e. dom vol ) -> A. x e. ran (,) ( `' ( Re o. F ) " x ) e. dom vol ) |
| 12 | 9 11 | simplbiim | |- ( F e. MblFn -> A. x e. ran (,) ( `' ( Re o. F ) " x ) e. dom vol ) |
| 13 | ioomax | |- ( -oo (,) +oo ) = RR |
|
| 14 | ioof | |- (,) : ( RR* X. RR* ) --> ~P RR |
|
| 15 | ffn | |- ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) |
|
| 16 | 14 15 | ax-mp | |- (,) Fn ( RR* X. RR* ) |
| 17 | mnfxr | |- -oo e. RR* |
|
| 18 | pnfxr | |- +oo e. RR* |
|
| 19 | fnovrn | |- ( ( (,) Fn ( RR* X. RR* ) /\ -oo e. RR* /\ +oo e. RR* ) -> ( -oo (,) +oo ) e. ran (,) ) |
|
| 20 | 16 17 18 19 | mp3an | |- ( -oo (,) +oo ) e. ran (,) |
| 21 | 13 20 | eqeltrri | |- RR e. ran (,) |
| 22 | 21 | a1i | |- ( F e. MblFn -> RR e. ran (,) ) |
| 23 | 8 12 22 | rspcdva | |- ( F e. MblFn -> ( `' ( Re o. F ) " RR ) e. dom vol ) |
| 24 | 6 23 | eqeltrrd | |- ( F e. MblFn -> dom F e. dom vol ) |