This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A continuous function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014) (Revised by Mario Carneiro, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnmbf | |- ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) -> F e. MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncff | |- ( F e. ( A -cn-> CC ) -> F : A --> CC ) |
|
| 2 | mblss | |- ( A e. dom vol -> A C_ RR ) |
|
| 3 | cnex | |- CC e. _V |
|
| 4 | reex | |- RR e. _V |
|
| 5 | elpm2r | |- ( ( ( CC e. _V /\ RR e. _V ) /\ ( F : A --> CC /\ A C_ RR ) ) -> F e. ( CC ^pm RR ) ) |
|
| 6 | 3 4 5 | mpanl12 | |- ( ( F : A --> CC /\ A C_ RR ) -> F e. ( CC ^pm RR ) ) |
| 7 | 1 2 6 | syl2anr | |- ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) -> F e. ( CC ^pm RR ) ) |
| 8 | simpll | |- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> A e. dom vol ) |
|
| 9 | simplr | |- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> F e. ( A -cn-> CC ) ) |
|
| 10 | recncf | |- Re e. ( CC -cn-> RR ) |
|
| 11 | 10 | a1i | |- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> Re e. ( CC -cn-> RR ) ) |
| 12 | 9 11 | cncfco | |- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> ( Re o. F ) e. ( A -cn-> RR ) ) |
| 13 | 2 | ad2antrr | |- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> A C_ RR ) |
| 14 | ax-resscn | |- RR C_ CC |
|
| 15 | 13 14 | sstrdi | |- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> A C_ CC ) |
| 16 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 17 | eqid | |- ( ( TopOpen ` CCfld ) |`t A ) = ( ( TopOpen ` CCfld ) |`t A ) |
|
| 18 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 19 | 16 17 18 | cncfcn | |- ( ( A C_ CC /\ RR C_ CC ) -> ( A -cn-> RR ) = ( ( ( TopOpen ` CCfld ) |`t A ) Cn ( topGen ` ran (,) ) ) ) |
| 20 | 15 14 19 | sylancl | |- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> ( A -cn-> RR ) = ( ( ( TopOpen ` CCfld ) |`t A ) Cn ( topGen ` ran (,) ) ) ) |
| 21 | eqid | |- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
|
| 22 | 16 21 | rerest | |- ( A C_ RR -> ( ( TopOpen ` CCfld ) |`t A ) = ( ( topGen ` ran (,) ) |`t A ) ) |
| 23 | 13 22 | syl | |- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> ( ( TopOpen ` CCfld ) |`t A ) = ( ( topGen ` ran (,) ) |`t A ) ) |
| 24 | 23 | oveq1d | |- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> ( ( ( TopOpen ` CCfld ) |`t A ) Cn ( topGen ` ran (,) ) ) = ( ( ( topGen ` ran (,) ) |`t A ) Cn ( topGen ` ran (,) ) ) ) |
| 25 | 20 24 | eqtrd | |- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> ( A -cn-> RR ) = ( ( ( topGen ` ran (,) ) |`t A ) Cn ( topGen ` ran (,) ) ) ) |
| 26 | 12 25 | eleqtrd | |- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> ( Re o. F ) e. ( ( ( topGen ` ran (,) ) |`t A ) Cn ( topGen ` ran (,) ) ) ) |
| 27 | retopbas | |- ran (,) e. TopBases |
|
| 28 | bastg | |- ( ran (,) e. TopBases -> ran (,) C_ ( topGen ` ran (,) ) ) |
|
| 29 | 27 28 | ax-mp | |- ran (,) C_ ( topGen ` ran (,) ) |
| 30 | simpr | |- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> x e. ran (,) ) |
|
| 31 | 29 30 | sselid | |- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> x e. ( topGen ` ran (,) ) ) |
| 32 | cnima | |- ( ( ( Re o. F ) e. ( ( ( topGen ` ran (,) ) |`t A ) Cn ( topGen ` ran (,) ) ) /\ x e. ( topGen ` ran (,) ) ) -> ( `' ( Re o. F ) " x ) e. ( ( topGen ` ran (,) ) |`t A ) ) |
|
| 33 | 26 31 32 | syl2anc | |- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> ( `' ( Re o. F ) " x ) e. ( ( topGen ` ran (,) ) |`t A ) ) |
| 34 | eqid | |- ( ( topGen ` ran (,) ) |`t A ) = ( ( topGen ` ran (,) ) |`t A ) |
|
| 35 | 34 | subopnmbl | |- ( ( A e. dom vol /\ ( `' ( Re o. F ) " x ) e. ( ( topGen ` ran (,) ) |`t A ) ) -> ( `' ( Re o. F ) " x ) e. dom vol ) |
| 36 | 8 33 35 | syl2anc | |- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> ( `' ( Re o. F ) " x ) e. dom vol ) |
| 37 | imcncf | |- Im e. ( CC -cn-> RR ) |
|
| 38 | 37 | a1i | |- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> Im e. ( CC -cn-> RR ) ) |
| 39 | 9 38 | cncfco | |- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> ( Im o. F ) e. ( A -cn-> RR ) ) |
| 40 | 39 25 | eleqtrd | |- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> ( Im o. F ) e. ( ( ( topGen ` ran (,) ) |`t A ) Cn ( topGen ` ran (,) ) ) ) |
| 41 | cnima | |- ( ( ( Im o. F ) e. ( ( ( topGen ` ran (,) ) |`t A ) Cn ( topGen ` ran (,) ) ) /\ x e. ( topGen ` ran (,) ) ) -> ( `' ( Im o. F ) " x ) e. ( ( topGen ` ran (,) ) |`t A ) ) |
|
| 42 | 40 31 41 | syl2anc | |- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> ( `' ( Im o. F ) " x ) e. ( ( topGen ` ran (,) ) |`t A ) ) |
| 43 | 34 | subopnmbl | |- ( ( A e. dom vol /\ ( `' ( Im o. F ) " x ) e. ( ( topGen ` ran (,) ) |`t A ) ) -> ( `' ( Im o. F ) " x ) e. dom vol ) |
| 44 | 8 42 43 | syl2anc | |- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> ( `' ( Im o. F ) " x ) e. dom vol ) |
| 45 | 36 44 | jca | |- ( ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) /\ x e. ran (,) ) -> ( ( `' ( Re o. F ) " x ) e. dom vol /\ ( `' ( Im o. F ) " x ) e. dom vol ) ) |
| 46 | 45 | ralrimiva | |- ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) -> A. x e. ran (,) ( ( `' ( Re o. F ) " x ) e. dom vol /\ ( `' ( Im o. F ) " x ) e. dom vol ) ) |
| 47 | ismbf1 | |- ( F e. MblFn <-> ( F e. ( CC ^pm RR ) /\ A. x e. ran (,) ( ( `' ( Re o. F ) " x ) e. dom vol /\ ( `' ( Im o. F ) " x ) e. dom vol ) ) ) |
|
| 48 | 7 46 47 | sylanbrc | |- ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) -> F e. MblFn ) |