This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate " F is a measurable function". This is more naturally stated for functions on the reals, see ismbf and ismbfcn for the decomposition of the real and imaginary parts. (Contributed by Mario Carneiro, 17-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ismbf1 | |- ( F e. MblFn <-> ( F e. ( CC ^pm RR ) /\ A. x e. ran (,) ( ( `' ( Re o. F ) " x ) e. dom vol /\ ( `' ( Im o. F ) " x ) e. dom vol ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coeq2 | |- ( f = F -> ( Re o. f ) = ( Re o. F ) ) |
|
| 2 | 1 | cnveqd | |- ( f = F -> `' ( Re o. f ) = `' ( Re o. F ) ) |
| 3 | 2 | imaeq1d | |- ( f = F -> ( `' ( Re o. f ) " x ) = ( `' ( Re o. F ) " x ) ) |
| 4 | 3 | eleq1d | |- ( f = F -> ( ( `' ( Re o. f ) " x ) e. dom vol <-> ( `' ( Re o. F ) " x ) e. dom vol ) ) |
| 5 | coeq2 | |- ( f = F -> ( Im o. f ) = ( Im o. F ) ) |
|
| 6 | 5 | cnveqd | |- ( f = F -> `' ( Im o. f ) = `' ( Im o. F ) ) |
| 7 | 6 | imaeq1d | |- ( f = F -> ( `' ( Im o. f ) " x ) = ( `' ( Im o. F ) " x ) ) |
| 8 | 7 | eleq1d | |- ( f = F -> ( ( `' ( Im o. f ) " x ) e. dom vol <-> ( `' ( Im o. F ) " x ) e. dom vol ) ) |
| 9 | 4 8 | anbi12d | |- ( f = F -> ( ( ( `' ( Re o. f ) " x ) e. dom vol /\ ( `' ( Im o. f ) " x ) e. dom vol ) <-> ( ( `' ( Re o. F ) " x ) e. dom vol /\ ( `' ( Im o. F ) " x ) e. dom vol ) ) ) |
| 10 | 9 | ralbidv | |- ( f = F -> ( A. x e. ran (,) ( ( `' ( Re o. f ) " x ) e. dom vol /\ ( `' ( Im o. f ) " x ) e. dom vol ) <-> A. x e. ran (,) ( ( `' ( Re o. F ) " x ) e. dom vol /\ ( `' ( Im o. F ) " x ) e. dom vol ) ) ) |
| 11 | df-mbf | |- MblFn = { f e. ( CC ^pm RR ) | A. x e. ran (,) ( ( `' ( Re o. f ) " x ) e. dom vol /\ ( `' ( Im o. f ) " x ) e. dom vol ) } |
|
| 12 | 10 11 | elrab2 | |- ( F e. MblFn <-> ( F e. ( CC ^pm RR ) /\ A. x e. ran (,) ( ( `' ( Re o. F ) " x ) e. dom vol /\ ( `' ( Im o. F ) " x ) e. dom vol ) ) ) |