This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law of converse over class composition. Theorem 26 of Suppes p. 64. (Contributed by NM, 19-Mar-1998) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvco | |- `' ( A o. B ) = ( `' B o. `' A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exancom | |- ( E. z ( x B z /\ z A y ) <-> E. z ( z A y /\ x B z ) ) |
|
| 2 | vex | |- x e. _V |
|
| 3 | vex | |- y e. _V |
|
| 4 | 2 3 | brco | |- ( x ( A o. B ) y <-> E. z ( x B z /\ z A y ) ) |
| 5 | vex | |- z e. _V |
|
| 6 | 3 5 | brcnv | |- ( y `' A z <-> z A y ) |
| 7 | 5 2 | brcnv | |- ( z `' B x <-> x B z ) |
| 8 | 6 7 | anbi12i | |- ( ( y `' A z /\ z `' B x ) <-> ( z A y /\ x B z ) ) |
| 9 | 8 | exbii | |- ( E. z ( y `' A z /\ z `' B x ) <-> E. z ( z A y /\ x B z ) ) |
| 10 | 1 4 9 | 3bitr4i | |- ( x ( A o. B ) y <-> E. z ( y `' A z /\ z `' B x ) ) |
| 11 | 10 | opabbii | |- { <. y , x >. | x ( A o. B ) y } = { <. y , x >. | E. z ( y `' A z /\ z `' B x ) } |
| 12 | df-cnv | |- `' ( A o. B ) = { <. y , x >. | x ( A o. B ) y } |
|
| 13 | df-co | |- ( `' B o. `' A ) = { <. y , x >. | E. z ( y `' A z /\ z `' B x ) } |
|
| 14 | 11 12 13 | 3eqtr4i | |- `' ( A o. B ) = ( `' B o. `' A ) |