This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sufficient condition for being a partial function. (Contributed by NM, 31-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elpm2r | |- ( ( ( A e. V /\ B e. W ) /\ ( F : C --> A /\ C C_ B ) ) -> F e. ( A ^pm B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdm | |- ( F : C --> A -> dom F = C ) |
|
| 2 | 1 | feq2d | |- ( F : C --> A -> ( F : dom F --> A <-> F : C --> A ) ) |
| 3 | 1 | sseq1d | |- ( F : C --> A -> ( dom F C_ B <-> C C_ B ) ) |
| 4 | 2 3 | anbi12d | |- ( F : C --> A -> ( ( F : dom F --> A /\ dom F C_ B ) <-> ( F : C --> A /\ C C_ B ) ) ) |
| 5 | 4 | adantr | |- ( ( F : C --> A /\ C C_ B ) -> ( ( F : dom F --> A /\ dom F C_ B ) <-> ( F : C --> A /\ C C_ B ) ) ) |
| 6 | 5 | ibir | |- ( ( F : C --> A /\ C C_ B ) -> ( F : dom F --> A /\ dom F C_ B ) ) |
| 7 | elpm2g | |- ( ( A e. V /\ B e. W ) -> ( F e. ( A ^pm B ) <-> ( F : dom F --> A /\ dom F C_ B ) ) ) |
|
| 8 | 6 7 | imbitrrid | |- ( ( A e. V /\ B e. W ) -> ( ( F : C --> A /\ C C_ B ) -> F e. ( A ^pm B ) ) ) |
| 9 | 8 | imp | |- ( ( ( A e. V /\ B e. W ) /\ ( F : C --> A /\ C C_ B ) ) -> F e. ( A ^pm B ) ) |