This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The preimage of any set open in the subspace topology of the range of the function is measurable. (Contributed by Mario Carneiro, 25-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfimaopn.1 | |- J = ( TopOpen ` CCfld ) |
|
| mbfimaopn2.2 | |- K = ( J |`t B ) |
||
| Assertion | mbfimaopn2 | |- ( ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) /\ C e. K ) -> ( `' F " C ) e. dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfimaopn.1 | |- J = ( TopOpen ` CCfld ) |
|
| 2 | mbfimaopn2.2 | |- K = ( J |`t B ) |
|
| 3 | 2 | eleq2i | |- ( C e. K <-> C e. ( J |`t B ) ) |
| 4 | 1 | cnfldtop | |- J e. Top |
| 5 | simp3 | |- ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) -> B C_ CC ) |
|
| 6 | cnex | |- CC e. _V |
|
| 7 | ssexg | |- ( ( B C_ CC /\ CC e. _V ) -> B e. _V ) |
|
| 8 | 5 6 7 | sylancl | |- ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) -> B e. _V ) |
| 9 | elrest | |- ( ( J e. Top /\ B e. _V ) -> ( C e. ( J |`t B ) <-> E. u e. J C = ( u i^i B ) ) ) |
|
| 10 | 4 8 9 | sylancr | |- ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) -> ( C e. ( J |`t B ) <-> E. u e. J C = ( u i^i B ) ) ) |
| 11 | 3 10 | bitrid | |- ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) -> ( C e. K <-> E. u e. J C = ( u i^i B ) ) ) |
| 12 | simpl2 | |- ( ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) /\ u e. J ) -> F : A --> B ) |
|
| 13 | ffun | |- ( F : A --> B -> Fun F ) |
|
| 14 | inpreima | |- ( Fun F -> ( `' F " ( u i^i B ) ) = ( ( `' F " u ) i^i ( `' F " B ) ) ) |
|
| 15 | 12 13 14 | 3syl | |- ( ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) /\ u e. J ) -> ( `' F " ( u i^i B ) ) = ( ( `' F " u ) i^i ( `' F " B ) ) ) |
| 16 | 1 | mbfimaopn | |- ( ( F e. MblFn /\ u e. J ) -> ( `' F " u ) e. dom vol ) |
| 17 | 16 | 3ad2antl1 | |- ( ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) /\ u e. J ) -> ( `' F " u ) e. dom vol ) |
| 18 | fimacnv | |- ( F : A --> B -> ( `' F " B ) = A ) |
|
| 19 | fdm | |- ( F : A --> B -> dom F = A ) |
|
| 20 | 18 19 | eqtr4d | |- ( F : A --> B -> ( `' F " B ) = dom F ) |
| 21 | 12 20 | syl | |- ( ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) /\ u e. J ) -> ( `' F " B ) = dom F ) |
| 22 | simpl1 | |- ( ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) /\ u e. J ) -> F e. MblFn ) |
|
| 23 | mbfdm | |- ( F e. MblFn -> dom F e. dom vol ) |
|
| 24 | 22 23 | syl | |- ( ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) /\ u e. J ) -> dom F e. dom vol ) |
| 25 | 21 24 | eqeltrd | |- ( ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) /\ u e. J ) -> ( `' F " B ) e. dom vol ) |
| 26 | inmbl | |- ( ( ( `' F " u ) e. dom vol /\ ( `' F " B ) e. dom vol ) -> ( ( `' F " u ) i^i ( `' F " B ) ) e. dom vol ) |
|
| 27 | 17 25 26 | syl2anc | |- ( ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) /\ u e. J ) -> ( ( `' F " u ) i^i ( `' F " B ) ) e. dom vol ) |
| 28 | 15 27 | eqeltrd | |- ( ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) /\ u e. J ) -> ( `' F " ( u i^i B ) ) e. dom vol ) |
| 29 | imaeq2 | |- ( C = ( u i^i B ) -> ( `' F " C ) = ( `' F " ( u i^i B ) ) ) |
|
| 30 | 29 | eleq1d | |- ( C = ( u i^i B ) -> ( ( `' F " C ) e. dom vol <-> ( `' F " ( u i^i B ) ) e. dom vol ) ) |
| 31 | 28 30 | syl5ibrcom | |- ( ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) /\ u e. J ) -> ( C = ( u i^i B ) -> ( `' F " C ) e. dom vol ) ) |
| 32 | 31 | rexlimdva | |- ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) -> ( E. u e. J C = ( u i^i B ) -> ( `' F " C ) e. dom vol ) ) |
| 33 | 11 32 | sylbid | |- ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) -> ( C e. K -> ( `' F " C ) e. dom vol ) ) |
| 34 | 33 | imp | |- ( ( ( F e. MblFn /\ F : A --> B /\ B C_ CC ) /\ C e. K ) -> ( `' F " C ) e. dom vol ) |