This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of cmvth as of 16-Apr-2025. (Contributed by Mario Carneiro, 29-Dec-2016) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cmvthOLD.a | |- ( ph -> A e. RR ) |
|
| cmvthOLD.b | |- ( ph -> B e. RR ) |
||
| cmvthOLD.lt | |- ( ph -> A < B ) |
||
| cmvthOLD.f | |- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
||
| cmvthOLD.g | |- ( ph -> G e. ( ( A [,] B ) -cn-> RR ) ) |
||
| cmvthOLD.df | |- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
||
| cmvthOLD.dg | |- ( ph -> dom ( RR _D G ) = ( A (,) B ) ) |
||
| Assertion | cmvthOLD | |- ( ph -> E. x e. ( A (,) B ) ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) = ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmvthOLD.a | |- ( ph -> A e. RR ) |
|
| 2 | cmvthOLD.b | |- ( ph -> B e. RR ) |
|
| 3 | cmvthOLD.lt | |- ( ph -> A < B ) |
|
| 4 | cmvthOLD.f | |- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
|
| 5 | cmvthOLD.g | |- ( ph -> G e. ( ( A [,] B ) -cn-> RR ) ) |
|
| 6 | cmvthOLD.df | |- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
|
| 7 | cmvthOLD.dg | |- ( ph -> dom ( RR _D G ) = ( A (,) B ) ) |
|
| 8 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 9 | 8 | subcn | |- - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 10 | 8 | mulcn | |- x. e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 11 | cncff | |- ( F e. ( ( A [,] B ) -cn-> RR ) -> F : ( A [,] B ) --> RR ) |
|
| 12 | 4 11 | syl | |- ( ph -> F : ( A [,] B ) --> RR ) |
| 13 | 1 | rexrd | |- ( ph -> A e. RR* ) |
| 14 | 2 | rexrd | |- ( ph -> B e. RR* ) |
| 15 | 1 2 3 | ltled | |- ( ph -> A <_ B ) |
| 16 | ubicc2 | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) ) |
|
| 17 | 13 14 15 16 | syl3anc | |- ( ph -> B e. ( A [,] B ) ) |
| 18 | 12 17 | ffvelcdmd | |- ( ph -> ( F ` B ) e. RR ) |
| 19 | lbicc2 | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
|
| 20 | 13 14 15 19 | syl3anc | |- ( ph -> A e. ( A [,] B ) ) |
| 21 | 12 20 | ffvelcdmd | |- ( ph -> ( F ` A ) e. RR ) |
| 22 | 18 21 | resubcld | |- ( ph -> ( ( F ` B ) - ( F ` A ) ) e. RR ) |
| 23 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 24 | 1 2 23 | syl2anc | |- ( ph -> ( A [,] B ) C_ RR ) |
| 25 | ax-resscn | |- RR C_ CC |
|
| 26 | 24 25 | sstrdi | |- ( ph -> ( A [,] B ) C_ CC ) |
| 27 | 25 | a1i | |- ( ph -> RR C_ CC ) |
| 28 | cncfmptc | |- ( ( ( ( F ` B ) - ( F ` A ) ) e. RR /\ ( A [,] B ) C_ CC /\ RR C_ CC ) -> ( z e. ( A [,] B ) |-> ( ( F ` B ) - ( F ` A ) ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
|
| 29 | 22 26 27 28 | syl3anc | |- ( ph -> ( z e. ( A [,] B ) |-> ( ( F ` B ) - ( F ` A ) ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 30 | cncff | |- ( G e. ( ( A [,] B ) -cn-> RR ) -> G : ( A [,] B ) --> RR ) |
|
| 31 | 5 30 | syl | |- ( ph -> G : ( A [,] B ) --> RR ) |
| 32 | 31 | feqmptd | |- ( ph -> G = ( z e. ( A [,] B ) |-> ( G ` z ) ) ) |
| 33 | 32 5 | eqeltrrd | |- ( ph -> ( z e. ( A [,] B ) |-> ( G ` z ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 34 | remulcl | |- ( ( ( ( F ` B ) - ( F ` A ) ) e. RR /\ ( G ` z ) e. RR ) -> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) e. RR ) |
|
| 35 | 8 10 29 33 25 34 | cncfmpt2ss | |- ( ph -> ( z e. ( A [,] B ) |-> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 36 | 31 17 | ffvelcdmd | |- ( ph -> ( G ` B ) e. RR ) |
| 37 | 31 20 | ffvelcdmd | |- ( ph -> ( G ` A ) e. RR ) |
| 38 | 36 37 | resubcld | |- ( ph -> ( ( G ` B ) - ( G ` A ) ) e. RR ) |
| 39 | cncfmptc | |- ( ( ( ( G ` B ) - ( G ` A ) ) e. RR /\ ( A [,] B ) C_ CC /\ RR C_ CC ) -> ( z e. ( A [,] B ) |-> ( ( G ` B ) - ( G ` A ) ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
|
| 40 | 38 26 27 39 | syl3anc | |- ( ph -> ( z e. ( A [,] B ) |-> ( ( G ` B ) - ( G ` A ) ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 41 | 12 | feqmptd | |- ( ph -> F = ( z e. ( A [,] B ) |-> ( F ` z ) ) ) |
| 42 | 41 4 | eqeltrrd | |- ( ph -> ( z e. ( A [,] B ) |-> ( F ` z ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 43 | remulcl | |- ( ( ( ( G ` B ) - ( G ` A ) ) e. RR /\ ( F ` z ) e. RR ) -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) e. RR ) |
|
| 44 | 8 10 40 42 25 43 | cncfmpt2ss | |- ( ph -> ( z e. ( A [,] B ) |-> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 45 | resubcl | |- ( ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) e. RR /\ ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) e. RR ) -> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) e. RR ) |
|
| 46 | 8 9 35 44 25 45 | cncfmpt2ss | |- ( ph -> ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 47 | 22 | recnd | |- ( ph -> ( ( F ` B ) - ( F ` A ) ) e. CC ) |
| 48 | 47 | adantr | |- ( ( ph /\ z e. ( A [,] B ) ) -> ( ( F ` B ) - ( F ` A ) ) e. CC ) |
| 49 | 31 | ffvelcdmda | |- ( ( ph /\ z e. ( A [,] B ) ) -> ( G ` z ) e. RR ) |
| 50 | 49 | recnd | |- ( ( ph /\ z e. ( A [,] B ) ) -> ( G ` z ) e. CC ) |
| 51 | 48 50 | mulcld | |- ( ( ph /\ z e. ( A [,] B ) ) -> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) e. CC ) |
| 52 | 38 | adantr | |- ( ( ph /\ z e. ( A [,] B ) ) -> ( ( G ` B ) - ( G ` A ) ) e. RR ) |
| 53 | 12 | ffvelcdmda | |- ( ( ph /\ z e. ( A [,] B ) ) -> ( F ` z ) e. RR ) |
| 54 | 52 53 | remulcld | |- ( ( ph /\ z e. ( A [,] B ) ) -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) e. RR ) |
| 55 | 54 | recnd | |- ( ( ph /\ z e. ( A [,] B ) ) -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) e. CC ) |
| 56 | 51 55 | subcld | |- ( ( ph /\ z e. ( A [,] B ) ) -> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) e. CC ) |
| 57 | 8 | tgioo2 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 58 | iccntr | |- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
|
| 59 | 1 2 58 | syl2anc | |- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
| 60 | 27 24 56 57 8 59 | dvmptntr | |- ( ph -> ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) = ( RR _D ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) ) |
| 61 | reelprrecn | |- RR e. { RR , CC } |
|
| 62 | 61 | a1i | |- ( ph -> RR e. { RR , CC } ) |
| 63 | ioossicc | |- ( A (,) B ) C_ ( A [,] B ) |
|
| 64 | 63 | sseli | |- ( z e. ( A (,) B ) -> z e. ( A [,] B ) ) |
| 65 | 64 51 | sylan2 | |- ( ( ph /\ z e. ( A (,) B ) ) -> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) e. CC ) |
| 66 | ovex | |- ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) e. _V |
|
| 67 | 66 | a1i | |- ( ( ph /\ z e. ( A (,) B ) ) -> ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) e. _V ) |
| 68 | 64 50 | sylan2 | |- ( ( ph /\ z e. ( A (,) B ) ) -> ( G ` z ) e. CC ) |
| 69 | fvexd | |- ( ( ph /\ z e. ( A (,) B ) ) -> ( ( RR _D G ) ` z ) e. _V ) |
|
| 70 | 32 | oveq2d | |- ( ph -> ( RR _D G ) = ( RR _D ( z e. ( A [,] B ) |-> ( G ` z ) ) ) ) |
| 71 | dvf | |- ( RR _D G ) : dom ( RR _D G ) --> CC |
|
| 72 | 7 | feq2d | |- ( ph -> ( ( RR _D G ) : dom ( RR _D G ) --> CC <-> ( RR _D G ) : ( A (,) B ) --> CC ) ) |
| 73 | 71 72 | mpbii | |- ( ph -> ( RR _D G ) : ( A (,) B ) --> CC ) |
| 74 | 73 | feqmptd | |- ( ph -> ( RR _D G ) = ( z e. ( A (,) B ) |-> ( ( RR _D G ) ` z ) ) ) |
| 75 | 27 24 50 57 8 59 | dvmptntr | |- ( ph -> ( RR _D ( z e. ( A [,] B ) |-> ( G ` z ) ) ) = ( RR _D ( z e. ( A (,) B ) |-> ( G ` z ) ) ) ) |
| 76 | 70 74 75 | 3eqtr3rd | |- ( ph -> ( RR _D ( z e. ( A (,) B ) |-> ( G ` z ) ) ) = ( z e. ( A (,) B ) |-> ( ( RR _D G ) ` z ) ) ) |
| 77 | 62 68 69 76 47 | dvmptcmul | |- ( ph -> ( RR _D ( z e. ( A (,) B ) |-> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) ) ) = ( z e. ( A (,) B ) |-> ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) ) ) |
| 78 | 64 55 | sylan2 | |- ( ( ph /\ z e. ( A (,) B ) ) -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) e. CC ) |
| 79 | ovex | |- ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) e. _V |
|
| 80 | 79 | a1i | |- ( ( ph /\ z e. ( A (,) B ) ) -> ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) e. _V ) |
| 81 | 53 | recnd | |- ( ( ph /\ z e. ( A [,] B ) ) -> ( F ` z ) e. CC ) |
| 82 | 64 81 | sylan2 | |- ( ( ph /\ z e. ( A (,) B ) ) -> ( F ` z ) e. CC ) |
| 83 | fvexd | |- ( ( ph /\ z e. ( A (,) B ) ) -> ( ( RR _D F ) ` z ) e. _V ) |
|
| 84 | 41 | oveq2d | |- ( ph -> ( RR _D F ) = ( RR _D ( z e. ( A [,] B ) |-> ( F ` z ) ) ) ) |
| 85 | dvf | |- ( RR _D F ) : dom ( RR _D F ) --> CC |
|
| 86 | 6 | feq2d | |- ( ph -> ( ( RR _D F ) : dom ( RR _D F ) --> CC <-> ( RR _D F ) : ( A (,) B ) --> CC ) ) |
| 87 | 85 86 | mpbii | |- ( ph -> ( RR _D F ) : ( A (,) B ) --> CC ) |
| 88 | 87 | feqmptd | |- ( ph -> ( RR _D F ) = ( z e. ( A (,) B ) |-> ( ( RR _D F ) ` z ) ) ) |
| 89 | 27 24 81 57 8 59 | dvmptntr | |- ( ph -> ( RR _D ( z e. ( A [,] B ) |-> ( F ` z ) ) ) = ( RR _D ( z e. ( A (,) B ) |-> ( F ` z ) ) ) ) |
| 90 | 84 88 89 | 3eqtr3rd | |- ( ph -> ( RR _D ( z e. ( A (,) B ) |-> ( F ` z ) ) ) = ( z e. ( A (,) B ) |-> ( ( RR _D F ) ` z ) ) ) |
| 91 | 38 | recnd | |- ( ph -> ( ( G ` B ) - ( G ` A ) ) e. CC ) |
| 92 | 62 82 83 90 91 | dvmptcmul | |- ( ph -> ( RR _D ( z e. ( A (,) B ) |-> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) = ( z e. ( A (,) B ) |-> ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) ) |
| 93 | 62 65 67 77 78 80 92 | dvmptsub | |- ( ph -> ( RR _D ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) = ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) ) ) |
| 94 | 60 93 | eqtrd | |- ( ph -> ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) = ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) ) ) |
| 95 | 94 | dmeqd | |- ( ph -> dom ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) = dom ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) ) ) |
| 96 | ovex | |- ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) e. _V |
|
| 97 | eqid | |- ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) ) = ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) ) |
|
| 98 | 96 97 | dmmpti | |- dom ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) ) = ( A (,) B ) |
| 99 | 95 98 | eqtrdi | |- ( ph -> dom ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) = ( A (,) B ) ) |
| 100 | 18 | recnd | |- ( ph -> ( F ` B ) e. CC ) |
| 101 | 37 | recnd | |- ( ph -> ( G ` A ) e. CC ) |
| 102 | 100 101 | mulcld | |- ( ph -> ( ( F ` B ) x. ( G ` A ) ) e. CC ) |
| 103 | 21 | recnd | |- ( ph -> ( F ` A ) e. CC ) |
| 104 | 36 | recnd | |- ( ph -> ( G ` B ) e. CC ) |
| 105 | 103 104 | mulcld | |- ( ph -> ( ( F ` A ) x. ( G ` B ) ) e. CC ) |
| 106 | 103 101 | mulcld | |- ( ph -> ( ( F ` A ) x. ( G ` A ) ) e. CC ) |
| 107 | 102 105 106 | nnncan2d | |- ( ph -> ( ( ( ( F ` B ) x. ( G ` A ) ) - ( ( F ` A ) x. ( G ` A ) ) ) - ( ( ( F ` A ) x. ( G ` B ) ) - ( ( F ` A ) x. ( G ` A ) ) ) ) = ( ( ( F ` B ) x. ( G ` A ) ) - ( ( F ` A ) x. ( G ` B ) ) ) ) |
| 108 | 100 104 | mulcld | |- ( ph -> ( ( F ` B ) x. ( G ` B ) ) e. CC ) |
| 109 | 108 105 102 | nnncan1d | |- ( ph -> ( ( ( ( F ` B ) x. ( G ` B ) ) - ( ( F ` A ) x. ( G ` B ) ) ) - ( ( ( F ` B ) x. ( G ` B ) ) - ( ( F ` B ) x. ( G ` A ) ) ) ) = ( ( ( F ` B ) x. ( G ` A ) ) - ( ( F ` A ) x. ( G ` B ) ) ) ) |
| 110 | 107 109 | eqtr4d | |- ( ph -> ( ( ( ( F ` B ) x. ( G ` A ) ) - ( ( F ` A ) x. ( G ` A ) ) ) - ( ( ( F ` A ) x. ( G ` B ) ) - ( ( F ` A ) x. ( G ` A ) ) ) ) = ( ( ( ( F ` B ) x. ( G ` B ) ) - ( ( F ` A ) x. ( G ` B ) ) ) - ( ( ( F ` B ) x. ( G ` B ) ) - ( ( F ` B ) x. ( G ` A ) ) ) ) ) |
| 111 | 100 103 101 | subdird | |- ( ph -> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` A ) ) = ( ( ( F ` B ) x. ( G ` A ) ) - ( ( F ` A ) x. ( G ` A ) ) ) ) |
| 112 | 91 103 | mulcomd | |- ( ph -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` A ) ) = ( ( F ` A ) x. ( ( G ` B ) - ( G ` A ) ) ) ) |
| 113 | 103 104 101 | subdid | |- ( ph -> ( ( F ` A ) x. ( ( G ` B ) - ( G ` A ) ) ) = ( ( ( F ` A ) x. ( G ` B ) ) - ( ( F ` A ) x. ( G ` A ) ) ) ) |
| 114 | 112 113 | eqtrd | |- ( ph -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` A ) ) = ( ( ( F ` A ) x. ( G ` B ) ) - ( ( F ` A ) x. ( G ` A ) ) ) ) |
| 115 | 111 114 | oveq12d | |- ( ph -> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` A ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` A ) ) ) = ( ( ( ( F ` B ) x. ( G ` A ) ) - ( ( F ` A ) x. ( G ` A ) ) ) - ( ( ( F ` A ) x. ( G ` B ) ) - ( ( F ` A ) x. ( G ` A ) ) ) ) ) |
| 116 | 100 103 104 | subdird | |- ( ph -> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` B ) ) = ( ( ( F ` B ) x. ( G ` B ) ) - ( ( F ` A ) x. ( G ` B ) ) ) ) |
| 117 | 91 100 | mulcomd | |- ( ph -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` B ) ) = ( ( F ` B ) x. ( ( G ` B ) - ( G ` A ) ) ) ) |
| 118 | 100 104 101 | subdid | |- ( ph -> ( ( F ` B ) x. ( ( G ` B ) - ( G ` A ) ) ) = ( ( ( F ` B ) x. ( G ` B ) ) - ( ( F ` B ) x. ( G ` A ) ) ) ) |
| 119 | 117 118 | eqtrd | |- ( ph -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` B ) ) = ( ( ( F ` B ) x. ( G ` B ) ) - ( ( F ` B ) x. ( G ` A ) ) ) ) |
| 120 | 116 119 | oveq12d | |- ( ph -> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` B ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` B ) ) ) = ( ( ( ( F ` B ) x. ( G ` B ) ) - ( ( F ` A ) x. ( G ` B ) ) ) - ( ( ( F ` B ) x. ( G ` B ) ) - ( ( F ` B ) x. ( G ` A ) ) ) ) ) |
| 121 | 110 115 120 | 3eqtr4d | |- ( ph -> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` A ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` A ) ) ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` B ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` B ) ) ) ) |
| 122 | fveq2 | |- ( z = A -> ( G ` z ) = ( G ` A ) ) |
|
| 123 | 122 | oveq2d | |- ( z = A -> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) = ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` A ) ) ) |
| 124 | fveq2 | |- ( z = A -> ( F ` z ) = ( F ` A ) ) |
|
| 125 | 124 | oveq2d | |- ( z = A -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) = ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` A ) ) ) |
| 126 | 123 125 | oveq12d | |- ( z = A -> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` A ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` A ) ) ) ) |
| 127 | eqid | |- ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) = ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) |
|
| 128 | ovex | |- ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) e. _V |
|
| 129 | 126 127 128 | fvmpt3i | |- ( A e. ( A [,] B ) -> ( ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ` A ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` A ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` A ) ) ) ) |
| 130 | 20 129 | syl | |- ( ph -> ( ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ` A ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` A ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` A ) ) ) ) |
| 131 | fveq2 | |- ( z = B -> ( G ` z ) = ( G ` B ) ) |
|
| 132 | 131 | oveq2d | |- ( z = B -> ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) = ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` B ) ) ) |
| 133 | fveq2 | |- ( z = B -> ( F ` z ) = ( F ` B ) ) |
|
| 134 | 133 | oveq2d | |- ( z = B -> ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) = ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` B ) ) ) |
| 135 | 132 134 | oveq12d | |- ( z = B -> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` B ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` B ) ) ) ) |
| 136 | 135 127 128 | fvmpt3i | |- ( B e. ( A [,] B ) -> ( ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ` B ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` B ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` B ) ) ) ) |
| 137 | 17 136 | syl | |- ( ph -> ( ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ` B ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` B ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` B ) ) ) ) |
| 138 | 121 130 137 | 3eqtr4d | |- ( ph -> ( ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ` A ) = ( ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ` B ) ) |
| 139 | 1 2 3 46 99 138 | rolle | |- ( ph -> E. x e. ( A (,) B ) ( ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) ` x ) = 0 ) |
| 140 | 94 | fveq1d | |- ( ph -> ( ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) ` x ) = ( ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) ) ` x ) ) |
| 141 | fveq2 | |- ( z = x -> ( ( RR _D G ) ` z ) = ( ( RR _D G ) ` x ) ) |
|
| 142 | 141 | oveq2d | |- ( z = x -> ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) = ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) ) |
| 143 | fveq2 | |- ( z = x -> ( ( RR _D F ) ` z ) = ( ( RR _D F ) ` x ) ) |
|
| 144 | 143 | oveq2d | |- ( z = x -> ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) = ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) |
| 145 | 142 144 | oveq12d | |- ( z = x -> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) ) |
| 146 | 145 97 96 | fvmpt3i | |- ( x e. ( A (,) B ) -> ( ( z e. ( A (,) B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` z ) ) ) ) ` x ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) ) |
| 147 | 140 146 | sylan9eq | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) ` x ) = ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) ) |
| 148 | 147 | eqeq1d | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) ` x ) = 0 <-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) = 0 ) ) |
| 149 | 47 | adantr | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( F ` B ) - ( F ` A ) ) e. CC ) |
| 150 | 73 | ffvelcdmda | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D G ) ` x ) e. CC ) |
| 151 | 149 150 | mulcld | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) e. CC ) |
| 152 | 91 | adantr | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( G ` B ) - ( G ` A ) ) e. CC ) |
| 153 | 87 | ffvelcdmda | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D F ) ` x ) e. CC ) |
| 154 | 152 153 | mulcld | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) e. CC ) |
| 155 | 151 154 | subeq0ad | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) = 0 <-> ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) = ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) ) |
| 156 | 148 155 | bitrd | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) ` x ) = 0 <-> ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) = ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) ) |
| 157 | 156 | rexbidva | |- ( ph -> ( E. x e. ( A (,) B ) ( ( RR _D ( z e. ( A [,] B ) |-> ( ( ( ( F ` B ) - ( F ` A ) ) x. ( G ` z ) ) - ( ( ( G ` B ) - ( G ` A ) ) x. ( F ` z ) ) ) ) ) ` x ) = 0 <-> E. x e. ( A (,) B ) ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) = ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) ) |
| 158 | 139 157 | mpbid | |- ( ph -> E. x e. ( A (,) B ) ( ( ( F ` B ) - ( F ` A ) ) x. ( ( RR _D G ) ` x ) ) = ( ( ( G ` B ) - ( G ` A ) ) x. ( ( RR _D F ) ` x ) ) ) |