This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of cmvth as of 16-Apr-2025. (Contributed by Mario Carneiro, 29-Dec-2016) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cmvthOLD.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| cmvthOLD.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| cmvthOLD.lt | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | ||
| cmvthOLD.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | ||
| cmvthOLD.g | ⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | ||
| cmvthOLD.df | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) | ||
| cmvthOLD.dg | ⊢ ( 𝜑 → dom ( ℝ D 𝐺 ) = ( 𝐴 (,) 𝐵 ) ) | ||
| Assertion | cmvthOLD | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D 𝐺 ) ‘ 𝑥 ) ) = ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmvthOLD.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | cmvthOLD.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | cmvthOLD.lt | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | |
| 4 | cmvthOLD.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | |
| 5 | cmvthOLD.g | ⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | |
| 6 | cmvthOLD.df | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) | |
| 7 | cmvthOLD.dg | ⊢ ( 𝜑 → dom ( ℝ D 𝐺 ) = ( 𝐴 (,) 𝐵 ) ) | |
| 8 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 9 | 8 | subcn | ⊢ − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 10 | 8 | mulcn | ⊢ · ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 11 | cncff | ⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | |
| 12 | 4 11 | syl | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 13 | 1 | rexrd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 14 | 2 | rexrd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 15 | 1 2 3 | ltled | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 16 | ubicc2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 17 | 13 14 15 16 | syl3anc | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 18 | 12 17 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) |
| 19 | lbicc2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 20 | 13 14 15 19 | syl3anc | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 21 | 12 20 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ℝ ) |
| 22 | 18 21 | resubcld | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ∈ ℝ ) |
| 23 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 24 | 1 2 23 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 25 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 26 | 24 25 | sstrdi | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
| 27 | 25 | a1i | ⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 28 | cncfmptc | ⊢ ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ∈ ℝ ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℂ ∧ ℝ ⊆ ℂ ) → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | |
| 29 | 22 26 27 28 | syl3anc | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 30 | cncff | ⊢ ( 𝐺 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | |
| 31 | 5 30 | syl | ⊢ ( 𝜑 → 𝐺 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 32 | 31 | feqmptd | ⊢ ( 𝜑 → 𝐺 = ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐺 ‘ 𝑧 ) ) ) |
| 33 | 32 5 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐺 ‘ 𝑧 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 34 | remulcl | ⊢ ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ∈ ℝ ∧ ( 𝐺 ‘ 𝑧 ) ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝑧 ) ) ∈ ℝ ) | |
| 35 | 8 10 29 33 25 34 | cncfmpt2ss | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝑧 ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 36 | 31 17 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐵 ) ∈ ℝ ) |
| 37 | 31 20 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐴 ) ∈ ℝ ) |
| 38 | 36 37 | resubcld | ⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) ∈ ℝ ) |
| 39 | cncfmptc | ⊢ ( ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) ∈ ℝ ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℂ ∧ ℝ ⊆ ℂ ) → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | |
| 40 | 38 26 27 39 | syl3anc | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 41 | 12 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
| 42 | 41 4 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝑧 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 43 | remulcl | ⊢ ( ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) → ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ) | |
| 44 | 8 10 40 42 25 43 | cncfmpt2ss | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 45 | resubcl | ⊢ ( ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝑧 ) ) ∈ ℝ ∧ ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ) → ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝑧 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑧 ) ) ) ∈ ℝ ) | |
| 46 | 8 9 35 44 25 45 | cncfmpt2ss | ⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝑧 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑧 ) ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 47 | 22 | recnd | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ∈ ℂ ) |
| 48 | 47 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ∈ ℂ ) |
| 49 | 31 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ℝ ) |
| 50 | 49 | recnd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) |
| 51 | 48 50 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝑧 ) ) ∈ ℂ ) |
| 52 | 38 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) ∈ ℝ ) |
| 53 | 12 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
| 54 | 52 53 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ) |
| 55 | 54 | recnd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑧 ) ) ∈ ℂ ) |
| 56 | 51 55 | subcld | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝑧 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑧 ) ) ) ∈ ℂ ) |
| 57 | 8 | tgioo2 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 58 | iccntr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) | |
| 59 | 1 2 58 | syl2anc | ⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 60 | 27 24 56 57 8 59 | dvmptntr | ⊢ ( 𝜑 → ( ℝ D ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝑧 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑧 ) ) ) ) ) = ( ℝ D ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝑧 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑧 ) ) ) ) ) ) |
| 61 | reelprrecn | ⊢ ℝ ∈ { ℝ , ℂ } | |
| 62 | 61 | a1i | ⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
| 63 | ioossicc | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) | |
| 64 | 63 | sseli | ⊢ ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) → 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 65 | 64 51 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝑧 ) ) ∈ ℂ ) |
| 66 | ovex | ⊢ ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D 𝐺 ) ‘ 𝑧 ) ) ∈ V | |
| 67 | 66 | a1i | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D 𝐺 ) ‘ 𝑧 ) ) ∈ V ) |
| 68 | 64 50 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) |
| 69 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐺 ) ‘ 𝑧 ) ∈ V ) | |
| 70 | 32 | oveq2d | ⊢ ( 𝜑 → ( ℝ D 𝐺 ) = ( ℝ D ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 71 | dvf | ⊢ ( ℝ D 𝐺 ) : dom ( ℝ D 𝐺 ) ⟶ ℂ | |
| 72 | 7 | feq2d | ⊢ ( 𝜑 → ( ( ℝ D 𝐺 ) : dom ( ℝ D 𝐺 ) ⟶ ℂ ↔ ( ℝ D 𝐺 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) ) |
| 73 | 71 72 | mpbii | ⊢ ( 𝜑 → ( ℝ D 𝐺 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 74 | 73 | feqmptd | ⊢ ( 𝜑 → ( ℝ D 𝐺 ) = ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐺 ) ‘ 𝑧 ) ) ) |
| 75 | 27 24 50 57 8 59 | dvmptntr | ⊢ ( 𝜑 → ( ℝ D ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐺 ‘ 𝑧 ) ) ) = ( ℝ D ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 76 | 70 74 75 | 3eqtr3rd | ⊢ ( 𝜑 → ( ℝ D ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐺 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐺 ) ‘ 𝑧 ) ) ) |
| 77 | 62 68 69 76 47 | dvmptcmul | ⊢ ( 𝜑 → ( ℝ D ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝑧 ) ) ) ) = ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D 𝐺 ) ‘ 𝑧 ) ) ) ) |
| 78 | 64 55 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑧 ) ) ∈ ℂ ) |
| 79 | ovex | ⊢ ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ∈ V | |
| 80 | 79 | a1i | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ∈ V ) |
| 81 | 53 | recnd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 82 | 64 81 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 83 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ∈ V ) | |
| 84 | 41 | oveq2d | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) = ( ℝ D ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 85 | dvf | ⊢ ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ | |
| 86 | 6 | feq2d | ⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ ↔ ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) ) |
| 87 | 85 86 | mpbii | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 88 | 87 | feqmptd | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) = ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) |
| 89 | 27 24 81 57 8 59 | dvmptntr | ⊢ ( 𝜑 → ( ℝ D ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝑧 ) ) ) = ( ℝ D ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 90 | 84 88 89 | 3eqtr3rd | ⊢ ( 𝜑 → ( ℝ D ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) |
| 91 | 38 | recnd | ⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) ∈ ℂ ) |
| 92 | 62 82 83 90 91 | dvmptcmul | ⊢ ( 𝜑 → ( ℝ D ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑧 ) ) ) ) = ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) ) |
| 93 | 62 65 67 77 78 80 92 | dvmptsub | ⊢ ( 𝜑 → ( ℝ D ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝑧 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑧 ) ) ) ) ) = ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D 𝐺 ) ‘ 𝑧 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) ) ) |
| 94 | 60 93 | eqtrd | ⊢ ( 𝜑 → ( ℝ D ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝑧 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑧 ) ) ) ) ) = ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D 𝐺 ) ‘ 𝑧 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) ) ) |
| 95 | 94 | dmeqd | ⊢ ( 𝜑 → dom ( ℝ D ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝑧 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑧 ) ) ) ) ) = dom ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D 𝐺 ) ‘ 𝑧 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) ) ) |
| 96 | ovex | ⊢ ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D 𝐺 ) ‘ 𝑧 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) ∈ V | |
| 97 | eqid | ⊢ ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D 𝐺 ) ‘ 𝑧 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) ) = ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D 𝐺 ) ‘ 𝑧 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) ) | |
| 98 | 96 97 | dmmpti | ⊢ dom ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D 𝐺 ) ‘ 𝑧 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) ) = ( 𝐴 (,) 𝐵 ) |
| 99 | 95 98 | eqtrdi | ⊢ ( 𝜑 → dom ( ℝ D ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝑧 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑧 ) ) ) ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 100 | 18 | recnd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ℂ ) |
| 101 | 37 | recnd | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐴 ) ∈ ℂ ) |
| 102 | 100 101 | mulcld | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) · ( 𝐺 ‘ 𝐴 ) ) ∈ ℂ ) |
| 103 | 21 | recnd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ℂ ) |
| 104 | 36 | recnd | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐵 ) ∈ ℂ ) |
| 105 | 103 104 | mulcld | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) ∈ ℂ ) |
| 106 | 103 101 | mulcld | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐴 ) ) ∈ ℂ ) |
| 107 | 102 105 106 | nnncan2d | ⊢ ( 𝜑 → ( ( ( ( 𝐹 ‘ 𝐵 ) · ( 𝐺 ‘ 𝐴 ) ) − ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐴 ) ) ) − ( ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) − ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐴 ) ) ) ) = ( ( ( 𝐹 ‘ 𝐵 ) · ( 𝐺 ‘ 𝐴 ) ) − ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) ) ) |
| 108 | 100 104 | mulcld | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) · ( 𝐺 ‘ 𝐵 ) ) ∈ ℂ ) |
| 109 | 108 105 102 | nnncan1d | ⊢ ( 𝜑 → ( ( ( ( 𝐹 ‘ 𝐵 ) · ( 𝐺 ‘ 𝐵 ) ) − ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) ) − ( ( ( 𝐹 ‘ 𝐵 ) · ( 𝐺 ‘ 𝐵 ) ) − ( ( 𝐹 ‘ 𝐵 ) · ( 𝐺 ‘ 𝐴 ) ) ) ) = ( ( ( 𝐹 ‘ 𝐵 ) · ( 𝐺 ‘ 𝐴 ) ) − ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) ) ) |
| 110 | 107 109 | eqtr4d | ⊢ ( 𝜑 → ( ( ( ( 𝐹 ‘ 𝐵 ) · ( 𝐺 ‘ 𝐴 ) ) − ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐴 ) ) ) − ( ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) − ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐴 ) ) ) ) = ( ( ( ( 𝐹 ‘ 𝐵 ) · ( 𝐺 ‘ 𝐵 ) ) − ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) ) − ( ( ( 𝐹 ‘ 𝐵 ) · ( 𝐺 ‘ 𝐵 ) ) − ( ( 𝐹 ‘ 𝐵 ) · ( 𝐺 ‘ 𝐴 ) ) ) ) ) |
| 111 | 100 103 101 | subdird | ⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝐴 ) ) = ( ( ( 𝐹 ‘ 𝐵 ) · ( 𝐺 ‘ 𝐴 ) ) − ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐴 ) ) ) ) |
| 112 | 91 103 | mulcomd | ⊢ ( 𝜑 → ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝐴 ) ) = ( ( 𝐹 ‘ 𝐴 ) · ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) ) ) |
| 113 | 103 104 101 | subdid | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) · ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) ) = ( ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) − ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐴 ) ) ) ) |
| 114 | 112 113 | eqtrd | ⊢ ( 𝜑 → ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝐴 ) ) = ( ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) − ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐴 ) ) ) ) |
| 115 | 111 114 | oveq12d | ⊢ ( 𝜑 → ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝐴 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝐴 ) ) ) = ( ( ( ( 𝐹 ‘ 𝐵 ) · ( 𝐺 ‘ 𝐴 ) ) − ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐴 ) ) ) − ( ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) − ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐴 ) ) ) ) ) |
| 116 | 100 103 104 | subdird | ⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝐵 ) ) = ( ( ( 𝐹 ‘ 𝐵 ) · ( 𝐺 ‘ 𝐵 ) ) − ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) ) ) |
| 117 | 91 100 | mulcomd | ⊢ ( 𝜑 → ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝐵 ) ) = ( ( 𝐹 ‘ 𝐵 ) · ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) ) ) |
| 118 | 100 104 101 | subdid | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) · ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) ) = ( ( ( 𝐹 ‘ 𝐵 ) · ( 𝐺 ‘ 𝐵 ) ) − ( ( 𝐹 ‘ 𝐵 ) · ( 𝐺 ‘ 𝐴 ) ) ) ) |
| 119 | 117 118 | eqtrd | ⊢ ( 𝜑 → ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝐵 ) ) = ( ( ( 𝐹 ‘ 𝐵 ) · ( 𝐺 ‘ 𝐵 ) ) − ( ( 𝐹 ‘ 𝐵 ) · ( 𝐺 ‘ 𝐴 ) ) ) ) |
| 120 | 116 119 | oveq12d | ⊢ ( 𝜑 → ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝐵 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝐵 ) ) ) = ( ( ( ( 𝐹 ‘ 𝐵 ) · ( 𝐺 ‘ 𝐵 ) ) − ( ( 𝐹 ‘ 𝐴 ) · ( 𝐺 ‘ 𝐵 ) ) ) − ( ( ( 𝐹 ‘ 𝐵 ) · ( 𝐺 ‘ 𝐵 ) ) − ( ( 𝐹 ‘ 𝐵 ) · ( 𝐺 ‘ 𝐴 ) ) ) ) ) |
| 121 | 110 115 120 | 3eqtr4d | ⊢ ( 𝜑 → ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝐴 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝐴 ) ) ) = ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝐵 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 122 | fveq2 | ⊢ ( 𝑧 = 𝐴 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐴 ) ) | |
| 123 | 122 | oveq2d | ⊢ ( 𝑧 = 𝐴 → ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝐴 ) ) ) |
| 124 | fveq2 | ⊢ ( 𝑧 = 𝐴 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝐴 ) ) | |
| 125 | 124 | oveq2d | ⊢ ( 𝑧 = 𝐴 → ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑧 ) ) = ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝐴 ) ) ) |
| 126 | 123 125 | oveq12d | ⊢ ( 𝑧 = 𝐴 → ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝑧 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑧 ) ) ) = ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝐴 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 127 | eqid | ⊢ ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝑧 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑧 ) ) ) ) = ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝑧 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑧 ) ) ) ) | |
| 128 | ovex | ⊢ ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝑧 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑧 ) ) ) ∈ V | |
| 129 | 126 127 128 | fvmpt3i | ⊢ ( 𝐴 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝑧 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝐴 ) = ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝐴 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 130 | 20 129 | syl | ⊢ ( 𝜑 → ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝑧 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝐴 ) = ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝐴 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 131 | fveq2 | ⊢ ( 𝑧 = 𝐵 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐵 ) ) | |
| 132 | 131 | oveq2d | ⊢ ( 𝑧 = 𝐵 → ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝐵 ) ) ) |
| 133 | fveq2 | ⊢ ( 𝑧 = 𝐵 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝐵 ) ) | |
| 134 | 133 | oveq2d | ⊢ ( 𝑧 = 𝐵 → ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑧 ) ) = ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝐵 ) ) ) |
| 135 | 132 134 | oveq12d | ⊢ ( 𝑧 = 𝐵 → ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝑧 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑧 ) ) ) = ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝐵 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 136 | 135 127 128 | fvmpt3i | ⊢ ( 𝐵 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝑧 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝐵 ) = ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝐵 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 137 | 17 136 | syl | ⊢ ( 𝜑 → ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝑧 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝐵 ) = ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝐵 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 138 | 121 130 137 | 3eqtr4d | ⊢ ( 𝜑 → ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝑧 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝐴 ) = ( ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝑧 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑧 ) ) ) ) ‘ 𝐵 ) ) |
| 139 | 1 2 3 46 99 138 | rolle | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝑧 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑧 ) ) ) ) ) ‘ 𝑥 ) = 0 ) |
| 140 | 94 | fveq1d | ⊢ ( 𝜑 → ( ( ℝ D ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝑧 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑧 ) ) ) ) ) ‘ 𝑥 ) = ( ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D 𝐺 ) ‘ 𝑧 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) ) ‘ 𝑥 ) ) |
| 141 | fveq2 | ⊢ ( 𝑧 = 𝑥 → ( ( ℝ D 𝐺 ) ‘ 𝑧 ) = ( ( ℝ D 𝐺 ) ‘ 𝑥 ) ) | |
| 142 | 141 | oveq2d | ⊢ ( 𝑧 = 𝑥 → ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D 𝐺 ) ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D 𝐺 ) ‘ 𝑥 ) ) ) |
| 143 | fveq2 | ⊢ ( 𝑧 = 𝑥 → ( ( ℝ D 𝐹 ) ‘ 𝑧 ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) | |
| 144 | 143 | oveq2d | ⊢ ( 𝑧 = 𝑥 → ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) = ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 145 | 142 144 | oveq12d | ⊢ ( 𝑧 = 𝑥 → ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D 𝐺 ) ‘ 𝑧 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) = ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D 𝐺 ) ‘ 𝑥 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) ) |
| 146 | 145 97 96 | fvmpt3i | ⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D 𝐺 ) ‘ 𝑧 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) ) ‘ 𝑥 ) = ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D 𝐺 ) ‘ 𝑥 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) ) |
| 147 | 140 146 | sylan9eq | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝑧 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑧 ) ) ) ) ) ‘ 𝑥 ) = ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D 𝐺 ) ‘ 𝑥 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) ) |
| 148 | 147 | eqeq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ℝ D ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝑧 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑧 ) ) ) ) ) ‘ 𝑥 ) = 0 ↔ ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D 𝐺 ) ‘ 𝑥 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) = 0 ) ) |
| 149 | 47 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) ∈ ℂ ) |
| 150 | 73 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐺 ) ‘ 𝑥 ) ∈ ℂ ) |
| 151 | 149 150 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D 𝐺 ) ‘ 𝑥 ) ) ∈ ℂ ) |
| 152 | 91 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) ∈ ℂ ) |
| 153 | 87 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
| 154 | 152 153 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ∈ ℂ ) |
| 155 | 151 154 | subeq0ad | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D 𝐺 ) ‘ 𝑥 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) = 0 ↔ ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D 𝐺 ) ‘ 𝑥 ) ) = ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) ) |
| 156 | 148 155 | bitrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ℝ D ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝑧 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑧 ) ) ) ) ) ‘ 𝑥 ) = 0 ↔ ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D 𝐺 ) ‘ 𝑥 ) ) = ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) ) |
| 157 | 156 | rexbidva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D ( 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( 𝐺 ‘ 𝑧 ) ) − ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( 𝐹 ‘ 𝑧 ) ) ) ) ) ‘ 𝑥 ) = 0 ↔ ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D 𝐺 ) ‘ 𝑥 ) ) = ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) ) |
| 158 | 139 157 | mpbid | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ( 𝐹 ‘ 𝐵 ) − ( 𝐹 ‘ 𝐴 ) ) · ( ( ℝ D 𝐺 ) ‘ 𝑥 ) ) = ( ( ( 𝐺 ‘ 𝐵 ) − ( 𝐺 ‘ 𝐴 ) ) · ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |